The Preparation of the Highly Preferred Orientation of Wurtzite Structure Zinc Oxide Films

Article Preview

Abstract:

Zinc oxide (ZnO) films are prepared on n-Si substrates by means of radio frequency (RF) magnetron sputtering method. The influences of substrate temperature on the crystal orientation and crystalline structure of ZnO films are investigated by X-ray diffraction (XRD) and Raman spectroscopy. The surface morphologies are studied by scanning electron microscope (SEM). It is indicated that ZnO films with wurtzite structure were successfully prepared. When the substrate temperature reduced to 100°C, the wurtzite structure with highly preferred orientation along the (002) plane of the ZnO film is prepared and the elliptical shape particles distributed uniformly on the ZnO film surface. The higher substrate temperature can offer more kinetic energy for mobility of particle on the surface to achieve other crystalline growth, resulting in the highly c-axis-oriented crystalline structure is destroyed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

287-292

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett. 70 (1997) 2230-2232.

DOI: 10.1063/1.118824

Google Scholar

[2] C. X. Xu, X. W. Sun, Field emission from zinc oxide nanopins, Appl. Phys. Lett. 83 (2003) 3806-3808.

DOI: 10.1063/1.1625774

Google Scholar

[3] J. M. Bao, M. A. Zimmler, F. Capasso, X. W. Wang, Z. F. Ren, Broadband ZnO single-nanowire light-emitting diode, Nano Letters 6 (2006) 1719-1722.

DOI: 10.1021/nl061080t

Google Scholar

[4] J. C. Johnson, H. Q. Yan, P. D. Yang, R. J. Saykally, Optical cavity effects in ZnO nanowire lasers and waveguides, J. Phys. Chem. B 107 (2003) 8816-8828.

DOI: 10.1021/jp034482n

Google Scholar

[5] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, ZnO Schottky ultraviolet photodetectors, Journal of Crystal Growth 225 (2001) 110-113.

DOI: 10.1016/s0022-0248(01)00830-2

Google Scholar

[6] P. Mitra, A. P. Chatterjee, H. S. Maiti, ZnO thin film sensor, Materials Letters 35 (1998) 33-38.

DOI: 10.1016/s0167-577x(97)00215-2

Google Scholar

[7] L. J. Mandalapu, Z. Yang, S. Chu, J. L. Liu, Ultraviolet emission from Sb-doped p -type ZnO based heterojunction light-emitting diodes, Applied Physics Letters 92(2008) 122101.

DOI: 10.1063/1.2901018

Google Scholar

[8] M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD), Thin Solid Films 403(2002) 485-488.

DOI: 10.1016/s0040-6090(01)01544-9

Google Scholar

[9] H. L. Liu, J. H. Yang, Z. Hua, Y. J. Zhang, L. L. Yang, L. Xiao, Z. Xie, The structure and magnetic properties of Cu-doped ZnO prepared by sol–gel method, Applied Surface Science 256 (2010) 4162-4165.

DOI: 10.1016/j.apsusc.2010.01.118

Google Scholar

[10] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Materials Science and Engineering B 71 (2000) 301-305.

DOI: 10.1016/s0921-5107(99)00395-5

Google Scholar

[11] B. G. Choi, I. H. Kim, D. H. Kim, K. S. Lee, T. S. Lee. B. Cheong, Y. -J. Baik, W. M. Kim, Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter, Journal of the European Ceramic Society 25 (2005).

DOI: 10.1016/j.jeurceramsoc.2005.03.023

Google Scholar

[12] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W.M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, W. K. Ge, Defects in ZnO nanorods prepared by a hydrothermal method, J. Phys. Chem. B 110 (2006) 20865-20871.

DOI: 10.1021/jp063239w

Google Scholar

[13] G. P. Daniel, V. B. Justinvictor, P. B. Nair, K. Joy, P. Koshy, P. V. Thomas, Effect of annealing temperature on the structural and optical properties of ZnO thin films prepared by RF magnetron sputtering, Physica B 405 (2010) 1782-1786.

DOI: 10.1016/j.physb.2010.01.039

Google Scholar

[14] X. L. Zhang, K. N. Hui, K. S. Hui, J. Singh, Structural and optical characterization of high-quality ZnO thin films deposited by reactive RF magnetron sputtering, Materials Research Bulletin 48 (2013) 1093-1098.

DOI: 10.1016/j.materresbull.2012.11.104

Google Scholar

[15] L. Balakrishnan, S. Gowrishankar, N. Gopalakrishnan, Fabrication of tridoped p-ZnO thin film and homojunction by RF magnetron sputtering, Ceramics International 38 (2012) 6221-6227.

DOI: 10.1016/j.ceramint.2012.04.075

Google Scholar

[16] S. Singh, P. Chakrabarti, Comparison of the structural and optical properties of ZnO thin films deposited by three different methods for optoelectronic applications, Superlattices and Microstructures 64 (2013) 283-293.

DOI: 10.1016/j.spmi.2013.09.031

Google Scholar

[17] H. L. Chen, Y. M. Lu, W. S. Hwang, Characterization of sputtered NiO thin films, Surf. Coat. Technol. 198 (2005) 138-142.

Google Scholar

[18] R. J. Hong, J. D. Shao, H. B. He, Z. X. Fan, Influence of buffer layer thickness on the structure and optical properties of ZnO thin films, Applied Surface Science 252 (2006) 2888-2893.

DOI: 10.1016/j.apsusc.2005.04.041

Google Scholar

[19] L. G. Ma, X. Q. Ai, X. L. Huang, S. Y. Ma, Effects of the substrate and oxygen partial pressure on the microstructures and optical properties of Ti-doped ZnO thin films, Superlattices and Microstructures 50 (2011) 703–712.

DOI: 10.1016/j.spmi.2011.09.012

Google Scholar

[20] D. P. Zhang, P. Fan, Z. H. Zheng, L. L. Ru, J. J. Huang, X. M. Cai, T. B. Chen, Effects of different thermal treatment on optical properties and microstructure of ZnO thin films, Advanced Materials Research 197 (2011) 1766 -1770.

DOI: 10.4028/www.scientific.net/amr.197-198.1766

Google Scholar

[21] R. J. Hong, J. B. Huang, H. B. He, Z. X. Fan, J. D. Shao, Influence of different post-treatments on the structure and optical properties of zinc oxide thin films, Applied Surface Science 242 (2005) 346-352.

DOI: 10.1016/j.apsusc.2004.08.037

Google Scholar

[22] D. P. Zhang, P. Fan, X. M. Cai, J. J. Huang, L. L. Ru, Z. H. Zheng, G. X. Liang, Y. K. Huang, Properties of ZnO thin films deposited by DC reactive magnetron sputtering under different plasma power, Applied Physics A 97 (2009) 437-441.

DOI: 10.1007/s00339-009-5234-y

Google Scholar

[23] R. Cebulla, R. Wendt, K. Ellmer, Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties, J . Appl. Phys. 83 (1998).

DOI: 10.1063/1.366798

Google Scholar

[24] B. Window, K. H. Muller, Strain, ion bombardment and energetic neutrals in magnetron sputtering, Thin Solid Films 171 (1989) 183-196.

DOI: 10.1016/0040-6090(89)90043-6

Google Scholar

[25] V. Lughi, D. R. Clarke, Defect and stress characterization of AlN films by raman spectroscopy, Appl. Phys. Lett. 89 (2006) 241911.

DOI: 10.1063/1.2404938

Google Scholar

[26] H. Q. Bian, S. Y. Ma, F. M. Li, H. B. Zhu, Influence of ZnO buffer layer on microstructure and Raman scattering of ZnO: Ag film on Si substrate, Superlattices and Microstructures 58 (2013) 171-177.

DOI: 10.1016/j.spmi.2013.03.017

Google Scholar

[27] S. H. Huang, H. Xiao, S. Shou, Annealing temperature dependence of Raman scattering in Si/SiO2 superlattice prepared by magnetron sputtering, Applied Surface Science 255 (2009) 4547-4550.

DOI: 10.1016/j.apsusc.2008.11.069

Google Scholar

[28] Z. G. Wang, H. Zang, K. F. Wei, J. R. Sun, C. F. Yao, T. L. Shen, Y. Z. Ma, L. L. Pang, Y. B. Zhu, Raman investigation of incident N-, Xe-ions induced effects in ZnO thin films, Nuclear Instruments and Methods in Physics Research B 269 (2011).

Google Scholar

[29] F. Rubio-Marcos, C. V. Manzano, J. J. Reinosa, I. Lorite, J. J. Romero, J. F. Fernandez, M. S. Martin-Gonzalez, Modification of optical properties in ZnO particles by surface deposition and anchoring of NiO nanoparticles, Journal of Alloys and Compounds 509 (2011).

DOI: 10.1016/j.jallcom.2010.11.149

Google Scholar

[30] R. P. Wang, G. Xu, P. Jin, Size dependence of electron-phonon coupling in ZnO nanowires, Physical Review B 69 (2004) 113303.

DOI: 10.1103/physrevb.69.113303

Google Scholar