The Facile Hydrothermal Preparation of WO3 and its Photocatalytic Performance under Visible-Light Irradiation

Article Preview

Abstract:

The orthorhombic WO3 nanoplates were fabricated via a hydrothermal process, using HBF4 as the acid source. They were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis diffused reflectance spectroscopy (UV-Vis DRS), respectively. The WO3 nanoplates exhibited nice UV-light driven photocatalytic performance in the degradation of Rhodamine B (RhB).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

347-351

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. Yun, C.H. Kwon, H.K. Hong, H.W. Shin, S.R. Kim, K. Lee, Abnormal current-voltage characteristics of WO3-doped SnO2 oxide semiconductors and their applications to gas sensors, Sensors and Actuators B: Chemical. 35 (1996) 48-51.

DOI: 10.1016/s0925-4005(96)02012-6

Google Scholar

[2] X.G. Han, X. Han, L. Li and C. Wang, Controlling the morphologies of WO3 particles and tuning the gas sensing properties, New J. Chem. 36 (2012) 2205-2208.

DOI: 10.1039/c2nj40600d

Google Scholar

[3] Z.F. Liu, M. Miyauchi, T. Yamazaki, Y.B. Shen, Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres, Sensors and Actuators B: Chemical. 140 (2009) 514-519.

DOI: 10.1016/j.snb.2009.04.059

Google Scholar

[4] J.M. Wang, P.S. Lee, J. Ma, Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material, J. Crystal Growth. 311 (2009) 316-319.

DOI: 10.1016/j.jcrysgro.2008.11.016

Google Scholar

[5] M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, H.J. Gao, Strong photoluminescence of nanostructured crystalline tungsten oxide thin films, Applied Physics Letters. 86 (2005) 141901-141901.

DOI: 10.1063/1.1898434

Google Scholar

[6] Y.P. Xie, G. Liu, L.C. Yin and H.M. Cheng, Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion, J. Mater. Chem. 22 (2012) 6746-6751.

DOI: 10.1039/c2jm16178h

Google Scholar

[7] Z.G. Zhao, Z.F. Liu and M. Miyauchi, Nature-inspired construction, characterization, and photocatalytic properties of single-crystalline tungsten oxide octahedra, Chem. Commun. 46 (2010) 3321-3323.

DOI: 10.1039/c001928c

Google Scholar

[8] N.L. Houx, G. Pourroy, F. Camerel, M. Comet and D. Spitzer, WO3 nanoparticles in the 5-30 nm range by solvothermal synthesis under microwave or resistive heating, J. Phys. Chem. C. 114 (2010) 155-161.

DOI: 10.1021/jp908669u

Google Scholar

[9] D.L. Chen and Y. Sugahara, Tungstate-based inorganic-organic hybrid nanobelts/nanotubes with lamellar mesostructures:  synthesis, characterization, and formation mechanism, Chem. Mater. 19 (2007) 1808-1815.

DOI: 10.1021/cm062039u

Google Scholar

[10] J. M Wang, E. Khoo, P.S. Lee and J. Ma, Synthesis, Assembly, and electrochromic properties of uniform crystalline WO3 nanorods, J. Phys. Chem. C. , 112 (2008) 14306-14312.

DOI: 10.1021/jp804035r

Google Scholar