Graphene/Sulfur Nanocomposite for High Performance Lithium-Sulfur Batteries

Article Preview

Abstract:

The graphene/sulfur nanocomposite has been synthesized by heating a mixture of graphene sheets and elemental sulfur. The morphology, structure and electrochemical performance of graphene/sulfur nanocomposite as cathode material for lithium-sulfur batteries were systematically investigated by field-emission scanning electron microscope, X-ray diffraction and a variety of electrochemical testing techniques. The graphene/sulfur nanocomposite cathodes display a high reversible capacity of 800-1200 mAh g-1, and stable cycling for more than 100 deep cycles at 0.1 C. The graphene sheets have good conductivity and an extremely high surface area, and provide a robust electron transport network. The graphene network also accommodates the volume change of the electrode during the Li-S electrochemical reaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

369-373

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao and Y. Shi: Chem. Commun. 48 (2012) 4106-4108.

Google Scholar

[2] R. Dominko, R.D. Cakan, M. Morcrette and J. M. Tarascon: Electrochem. Commun. 13 (2011) 117-120.

Google Scholar

[3] G. Zhou, L.C. Yin, D.W. Wang, L. Li, S. Pe, I. R. Gentle, F. Li, and H.M. Cheng: ACS Nano 7 (2013) 53676-5375.

Google Scholar

[4] X. Ji and L. F. Narzar: J. Mater. Chem. 20 (2010) 9821-9826.

Google Scholar

[5] L.F. Xiao, Y. L. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z.M. Nie, G.J. Exarhos, J. Liu: Adv. Mater. 24 (2012) 1176-1181.

DOI: 10.1002/adma.201103392

Google Scholar

[6] J.Z. Wang, L. Lu, M. Choucair, J.A. Stride, X. Xu, and H.K. Liu: J. Power Sources 196 (2011) 7030-7034.

DOI: 10.1016/j.jpowsour.2010.09.106

Google Scholar

[7] G.M. Zhou, D.W. Wang, F. Li, P.X. Hou, L. Yin, C. Liu, G.Q. Lu, I. R. Gentle and H.M. Cheng, Energy Environ. Sci. 5 (2012) 8901-8906.

Google Scholar

[8] X.L. Ji, K.T. Lee and L.F. Nazar: Nat. Mater. 8 (2009) 500-506.

Google Scholar

[9] J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein and L.F. Nazar: Angew. Chem. Int. Ed. 51 (2012) 3591-3595.

DOI: 10.1002/anie.201107817

Google Scholar

[10] M.Q. Zhao, X.F. Liu, Q. Zhang, G.L. Tian, J.Q. Huang, W. Zhu and F. Wei: ACS Nano 6 (2012) 10759-10769.

Google Scholar

[11] J.Q. Huang, X.F. Liu, Q. Zhang, C.M. Chen, M.Q. Zhao, S.M. Zhang, W. Zhu, W.Z. Qian and F. Wei: Nano Energy 2 (2013) 314-321.

Google Scholar

[12] L. Z. Bai, D.L. Zhao, Z.T. Zhang, W.G. Xie and J.M. Zhang: Electrochim. Acta 107 (2013) 555-561.

Google Scholar