Enhanced Field Emission Characteristics of ZnS Dentalation Nanostructures

Abstract:

Article Preview

Large quantities of ZnS dentalation nanostructures were synthesized successfully at low temperature using a simple chemical vapor deposition method, and the microstructures and field emission properties of the dentalation structures were investigated. The results indicated that the stem of the dentalation structures is single-crystalline but the surfaces of the teeth are amorphous. The photoluminescence properties show a strong green emission at 520.89 nm due to S vacancy. Investigations on the field emission properties of the ZnS dentalation nanostructures imply that the turn-on field is about 5.56V/μm at an anode-cathode distance of 150μm, which should be attributed to the specific sharp tips and high aspect ratios of the present needle-shaped structure. The field emission behavior of the ZnS obeys Fowler-Nordheim relationship. The results could be valuable for using the ZnS nanostructure as cold-cathode field-emission materials.

Info:

Periodical:

Edited by:

Zhang Mei

Pages:

379-383

Citation:

J. J. Qi et al., "Enhanced Field Emission Characteristics of ZnS Dentalation Nanostructures", Advanced Materials Research, Vol. 936, pp. 379-383, 2014

Online since:

June 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] S. Velumani, J.A. Ascencio: Appl. Phys. A: Mater. Sci. Process. Vol. 79 (2004), p.153.

[2] W. Park, J.S. King, C.W. Neff and C. Summers: Phys. Status Solidi B. Vol. 229 (2002), p.7949.

[3] E. Monroy, F. Omnes, F. Calle: Semicond. Sci. Technol. Vol. 18 (2003), p. R33.

[4] R.N. Bhargava, D. Gallagher, X. Hong, D. Nurminkko: Phys. Rev. Lett. Vol. 72 (1994), p.416.

[5] E. Monroy, F. Omnes, F. Calle: Semicond. Sci. Technol. Vol. 18 (2003), p. R33.

[6] Y. Jiang, X.M. Meng, J. Liu, Z.Y. Xie, C.S. Lee, S.T. Lee: Adv. Mater. Vol. 15 (2003), p.323.

[7] Y. Jiang, X.M. Meng, J. Liu, Z.R. Hong, C.S. Lee, S.T. Lee: Adv. Mater. Vol. 15 (2003), p.1195.

[8] X.H. Zhang, Y. Zhang, Y.P. Song, Z. Wang, D.P. Yu: Physica E. Vol. 28 (2005), p.1.

[9] L.W. Yin, Y.S. Bando, J.H. Zhan, M.S. Li, D. Golberg: Adv. Mater. Vol. 17 (2005), p. (1972).

[10] Y.C. Zhu, Y.S. Bando, D.F. Xue, D. Golberg: J. Am. Chem. Soc. Vol. 125 (2003), p.16196.

[11] J.F. Gong, S.G. Yang, H.B. Huang, J.H. Duan, H.W. Liu, Y.W. Du: Small. Vol. 2 (2006), p.732.

[12] Z.Q. Deng, J.J. Qi, Y. Zhang, Q.L. Liao, Y.H. Huang: Nanotechnology. Vol. 18 (2007), p.475603.

[13] D. Moore, Y. Ding, Z. L. Wang: Angew. Chem. Vol. 118 (2006), p.5274.

[14] D. Moore, Z. L. Wang: J. Mater. Chem. Vol. 16 (2006), p.3898.

[15] Q.L. Liao, Y. Zhang, L.S. Xia, J.J. Qi, Z.Q. Deng: Acta Phys. Sin. Vol. 57 (2008), p.2328.

[16] C.J. Lee, T.J. Lee, S.C. Lyu: Appl. Phys. Lett. Vol. 81 (2002), p.3648.

[17] G. Hang, Q.F. Zhang, Y. Pei: Vacuum. Vol. 56 (2004), p.53.

[18] K.W. Wong, X.T. Zhou, C.K. Au: Appl. Phys. Lett. Vol. 75 (1999), p.2918.

[19] Y.W. Zhu, T. Yu, F.C. Cheong : Nanotechnology. Vol. 16 (2005), p.88.

[20] X. Fang, T. Zhai, Y. Bando, D. Golberg: Progress in Materials Science. Vol. 56 (2011), p.175.

[21] F. Lu, W. P. Cai, Y. G. Zhang : Appl. Phys. Lett. Vol. 89 (2006), p.231928.

[22] Y.Q. Chang, M.W. Wang, X.H. Chen: Solid State Communications. Vol. 142 (2007), p.295.

[23] F. Lu, W.P. Cai, Y.G. Zhang: Appl. Phys. Lett. Vol. 89 (2006), p.231928.

Fetching data from Crossref.
This may take some time to load.