[1]
H. Li, H. Zhao, X. Zhang, Y. Lu, Y. Hu, A novel route to the synthesis of PP-g-PMMA copolymer via ATRP reaction initiated by Si–Cl bond, European Polymer Journal. 43 (2007) 109-118.
DOI: 10.1016/j.eurpolymj.2006.10.010
Google Scholar
[2]
K.E. Russell, Free radical graft polymerization and copolymerization at higher temperatures, Progress in Polymer Science. 27 (2002) 1007-1038.
DOI: 10.1016/s0079-6700(02)00007-2
Google Scholar
[3]
W. Qiu, T. Endo, T. Hirotsu, A novel technique for preparing of maleic anhydride grafted polyolefins, European Polymer Journal. 41 (2005) 1979-(1984).
DOI: 10.1016/j.eurpolymj.2005.03.016
Google Scholar
[4]
C. Cai, Q. Shi, L. Li, L. Zhu, J. Yin, Grafting acrylic acid onto polypropylene by reactive extrusion with pre-irradiated PP as initiator, Radiation Physics and Chemistry. 77 (2008) 370-372.
DOI: 10.1016/j.radphyschem.2007.02.081
Google Scholar
[5]
Q. Chen, F. Yin, L. Zheng, X. Xiao, J. Lin, Crystallization Behavior of Polypropylene-graft-cardanol Prepared by Reactive Extrusion, INTERNATIONAL POLYMER PROCESSING. 28 (2013) 43-48.
DOI: 10.3139/217.2649
Google Scholar
[6]
S. Kumar, B.S. Butola, M. Joshi, POSS/polypropylene hybrid nanocomposite monofilaments by reactive extrusion, Fibers Polym. 14 (2013) 428-435.
DOI: 10.1007/s12221-013-0428-5
Google Scholar
[7]
M.R. Badrossamay, G. Sun, Preparation of rechargeable biocidal polypropylene by reactive extrusion with diallylamino triazine, European Polymer Journal. 44 (2008) 733-742.
DOI: 10.1016/j.eurpolymj.2007.12.005
Google Scholar
[8]
T.G. Zhu L, Shi Q, Yin J, Rare earth compounds assisted melt grafting of maleic anhydride onto isotactic by reactive extrusion, Chemical J of Chinese University. 27 (2006) 970-974.
Google Scholar
[9]
Q. Chen, H. Xue, J. Lin, Preparation of polypropylene-graft-cardanol by reactive extrusion and its composite material with bamboo powder, Journal of Applied Polymer Science. 115 (2010) 1160-1167.
DOI: 10.1002/app.31227
Google Scholar
[10]
M. Rätzsch, M. Arnold, E. Borsig, H. Bucka, N. Reichelt, Radical reactions on polypropylene in the solid state, Progress in Polymer Science. 27 (2002) 1195-1282.
DOI: 10.1016/s0079-6700(02)00006-0
Google Scholar
[11]
H. Azizi, I. Ghasemi, M. Karrabi, Controlled-peroxide degradation of polypropylene: Rheological properties and prediction of MWD from rheological data, Polymer Testing. 27 (2008) 548-554.
DOI: 10.1016/j.polymertesting.2008.02.004
Google Scholar
[12]
B. -R. Sheng, B. Li, B. -H. Xie, W. Yang, J. -M. Feng, M. -B. Yang, Influences of molecular weight and crystalline structure on fracture behavior of controlled-rheology-polypropylene prepared by reactive extrusion, Polymer Degradation and Stability. 93 (2008).
DOI: 10.1016/j.polymdegradstab.2007.09.011
Google Scholar
[13]
L. Zhu, G. Tang, Q. Shi, C. Cai, J. Yin, Neodymium oxide co-catalyzed melt free radical grafting of maleic anhydride onto co-polypropylene by reactive extrusion, Reactive and Functional Polymers. 66 (2006) 984-992.
DOI: 10.1016/j.reactfunctpolym.2006.01.007
Google Scholar
[14]
D. Munteanu. Metal Containing Polymers Systems [M]. New York: Hanser, 1985: 479-509.
Google Scholar