Nanostructured Morphology of Spinel LiMn2O4 Oxide under Microwave Heating

Article Preview

Abstract:

The surface morphology and structure of the cubic stoichiometric spinel LiMn2O4 powder prepared by microwave heating were examined using X-ray diffraction, scanning electron microscopy and transmittance electron microcopy. It is shown that the surface morphology of LiMn2O4 particle changed with increasing preparing temperature, while the crystal structure kept unchanged. Novel nanostructured morphologies including nanorods and nanowhiskers were formed under appropriate synthesis conditions. The growth mechanism of the nanostructured morphology of spinel LiMn2O4 was discussed in accordance with period bonding chains (PBCs) theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

452-458

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. M. Thackeray, P. J. Johnson, L. A. Picciotto, P. G. Bruce, J. B. Goodenough, Electrochemical extraction of lithium of LiMn2O4, Mater. Res. Bull. 19 (1984) 179-187.

DOI: 10.1016/0025-5408(84)90088-6

Google Scholar

[2] T. M. Tarascon, E. Wang, F. K. Shokoohi, The Spinel phase of LiMn2O4 as a cathode in secondary lithium cells, J. Electrochem. Soc. 138 (1991) 2859-2864.

DOI: 10.1149/1.2085330

Google Scholar

[3] M. M. Thackeray, Spinel electrodes for lithium batteries, J. Am. Ceram. Soc. 82 (1999) 3347- 3354.

Google Scholar

[4] H. Gadjov, M Gorova, V. Kotzeva, LiMn2O4 prepared by different methods at identical thermal treatment conditions: structural, morphological and electrochemical characteristics, J. Power Sources. 134 (2004) 110-117.

DOI: 10.1016/j.jpowsour.2004.03.027

Google Scholar

[5] K. M. Shaju, P. G. Bruce, A stoichiometric nano-LiMn2O4 Spinel electrode exhibiting high power and stable cycling, Chem. Mater. 20 (2008) 5557-5562.

DOI: 10.1021/cm8010925

Google Scholar

[6] T. Doi, T. Yahiro, S. Okada, Electrochemical insertion and extraction of lithium-ion at nano-sized LiMn2O4 particles prepared by a spray pyrolysis method, Electrochem. Acta 53 (2008) 8064-8069.

DOI: 10.1016/j.electacta.2008.06.024

Google Scholar

[7] D. K. Kim, P. Muralidharan, H. W. Lee, Spinel LiMn2O4 nanorods as lithium ion battery cathodes, Nano. Letters. 8 (2008) 3948-3952.

DOI: 10.1021/nl8024328

Google Scholar

[8] E. Hosono, H. Matsuda, T. Saito, Synthesis of single crystalline Li0. 44MnO2 nanowires with large specific capacity and good high current density property for a positive electrode of Li ion battery, J. Power Sources. 195 (2010) 7098-7101.

DOI: 10.1016/j.jpowsour.2010.04.086

Google Scholar

[9] Y. Zhou, C. Chen, J. Huang, Synthesis of high-ordered LiMn2O4 nanowire arrays by AAO template and its structural properties, Mater. Sci. Eng. B. 95 (2002) 77-82.

DOI: 10.1016/s0921-5107(02)00197-6

Google Scholar

[10] J. Y. Luo, D.D. Xiong, Y. Xiao, LiMn2O4 nanorods, nano-thorn microsphere and hollow nanospheres as enhanced cathode materials of lithium-ion battery, J. Phys. Chem. C. 112 (2008) 12051-12057.

DOI: 10.1021/jp800915f

Google Scholar

[11] Q. Liu, D. Mao, C. Chang, F. Huang, Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application, J. Power Sources. 173 (2007) 538-544.

DOI: 10.1016/j.jpowsour.2007.03.077

Google Scholar

[12] P. S. Whitfield, J. J. Davidson, Microwave synthesis of Li1. 025Mn1. 975M4 and Li1+xMn2-xO4-yFy, J. Electrochem. Soc. 147( 2000) 4476-4484.

DOI: 10.1002/chin.200110021

Google Scholar

[13] M. M. Thackeray, M, F, Mansuetto, D. W. Dees, The thermal stability of lithium-manganese-oxide spinel phases, Mater. Res. Bull. 31 (1996) 133-140.

DOI: 10.1016/0025-5408(95)00190-5

Google Scholar

[14] M. A. Lovette, A. R. Browning, D. W. Griffin, Crystal shape engineering, Ind. Eng. Chem. Res. 47 (2008) 9812-9833.

DOI: 10.1021/ie800900f

Google Scholar

[15] P. Hartman, W. G. Perdok, On the relation between structure and morphology of crystals, Acta.

Google Scholar

[16] Crystallogr. 8 (1955) 48-52.

Google Scholar

[17] M. R. Huang, C. W. Lin, H. Y. Lu, Crystallographic facetting in solid state reacted LiMn2O4 spinel powder, Appl. Surf. Sci. 177 ( 2001) 103-113.

DOI: 10.1016/s0169-4332(01)00205-7

Google Scholar

[18] R. Dekkers, C. F. Woensdregt, Crystal structural control on surface topology and crystal morphology or normal spinel (MgAl2O4), J. Cryst. Growth. 236 (2002) 441-454.

DOI: 10.1016/s0022-0248(01)02217-5

Google Scholar

[19] S. L. Sui, E. Vilemo and Q. H Zhang. Microwave induced chemical reaction in synthesis and catalysis, in: D. E. Clark, W. H. Sutton, D. A. Lewis (Eds), Microwaves: theory and application in materials processing IV[C]. Ceramic transactions, American Ceramic Society, Westerville, OH, 1997, 80, pp.331-339.

Google Scholar

[20] K. E. Sickafus, J. M. Wills, Structure of spinel, J. Am. Ceram. Soc. 82 (1999) 3279-3292.

Google Scholar

[21] R. K. Misha, G. Thomas, Surface energy of spinel, J. Appl. Phys. 48 (1977) 4576-4580.

Google Scholar