[1]
G. Tsekouras and J.T.S. Irvine, The role of defect chemistry in strontium titanates utilised for high temperature steam electrolysis, J. Mater. Chem. 21 (2011) 9367-9376.
DOI: 10.1039/c1jm11313e
Google Scholar
[2]
S. Sista, Z. Hong, L. Chen, Y. Yang, Tandem polymer photovoltaic cells—current status, challenges and future outlook, Energy Environ. Sci. 4 (2011) 1606-1620.
DOI: 10.1039/c0ee00754d
Google Scholar
[3]
N.V. Gnanapragasam, B.V. Reddy, M.A. Rosen, Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels, Int. J. Hydrogen Energy 35 (2010) 4788-4807.
DOI: 10.1016/j.ijhydene.2009.10.047
Google Scholar
[4]
A. Hauch, S.D. Ebbesen, S.H. Jensen, M. Mogensen, Highly efficient high temperature electrolysis, J. Mater. Chem. 18 (2008) 2331-2340.
DOI: 10.1039/b718822f
Google Scholar
[5]
M. Ni, M.K.H. Leung, D.Y.C. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), Int. J. Hydrogen Energy 33 (2008) 2337-2354.
DOI: 10.1016/j.ijhydene.2008.02.048
Google Scholar
[6]
K. Xie, Y.Q. Zhang, G.Y. Meng, J.T.S. Irive, Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser, Energy Environ. Sci. 4 (2011) 2218-2222.
DOI: 10.1039/c1ee01035b
Google Scholar
[7]
E.C. Shin, P.A. Ahn, H.H. Seo, J.M. Jo, S.K. Woo, Polarization mechanism of high temperature electrolysis in a Ni-YSZ/YSZ/LSM solid oxide cell by parametric impedance analysis, Solid State Ion. 232 (2013) 80-96.
DOI: 10.1016/j.ssi.2012.10.028
Google Scholar
[8]
M. Pihlatie, A. Kaiser, M. Mogensen, Redox stability of SOFC: Thermal analysis of Ni-YSZ composites, Solid State Ion. 180 (232) 1100-1112.
DOI: 10.1016/j.ssi.2009.04.011
Google Scholar
[9]
S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2 (2003) 320-323.
DOI: 10.1038/nmat871
Google Scholar
[10]
S.S. Xu, S.G. Chen, M. Li, K. Xie, Y. Wang, Y.C. Wu, Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-ion-conducting solid oxide electrolyser, J. Power Sources 239 (2013) 332-340.
DOI: 10.1016/j.jpowsour.2013.03.182
Google Scholar
[11]
X.B. Zhu, Z. Lu, B. Wei, M.L. Liu, X.Q. Huang, W.H. Su, A comparison of La0. 75Sr0. 25Cr0. 5Mn0. 5O3−δ and Ni impregnated porous YSZ anodes fabricated in two different ways for SOFCs, Electrochim. Acta 55(2010) 3932-3938.
DOI: 10.1016/j.electacta.2010.02.028
Google Scholar
[12]
Y. Gan, Q.Q. Qin, S.G. Chen, Y. Wang, D.H. Dong, K. Xie, Composite cathode La0. 4Sr0. 4TiO3-Ce0. 8Sm0. 2O2-δ impregnated with Ni for high-temperature steam electrolysis, J. Power Sources 245 (2014) 245-255.
DOI: 10.1016/j.jpowsour.2013.06.107
Google Scholar
[13]
D. Neagu, J.T.S. Irvine, Structure and properties of La0. 4Sr0. 4TiO3 ceramics for use as anode materials in solid oxide fuel cells, Chem. Mater. 22 (2010) 5042-5053.
DOI: 10.1021/cm101508w
Google Scholar
[14]
J. Canales-Vazquez, M.J. Smith, J.T.S. Irvine, W.Z. Zhou, Studies on the Reorganization of Extended Defects with Increasing n in the Perovskite-Based La4Srn–4TinO3n+2 Series, Adv. Funct. Mater. 15 (2005) 1000-1008.
DOI: 10.1002/adfm.200400362
Google Scholar