Electrochemical Investigation of La0.2Sr0.8TiO3+δ-Ce0.8Sm0.2O2-δ Composite Cathode for the Direct High Temperature Steam Electrolysis

Article Preview

Abstract:

This paper investigates a composite cathode La0.2Sr0.8TiO3+δ-Ce0.8Sm0.2O2-δ (LSTO-SDC) for the direct steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer. The dependences of electrical conductivity of the reduced LSTO on temperature and oxygen partial pressure are studied and further correlated to the electrochemical properties of the cathode in symmetric cell LSTO-SDC/YSZ/LSTO-SDC and solid oxide electrolyzer LSTO-SDC/YSZ/LSM-SDC, respectively. Current efficiencies of the solid oxide electrolyzer with LSTO-SDC cathode were found to be 92.38% and 91.17% with or without reducing gas flowing over them under the applied voltage of 1.8 V at 800 °C, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

464-470

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Tsekouras and J.T.S. Irvine, The role of defect chemistry in strontium titanates utilised for high temperature steam electrolysis, J. Mater. Chem. 21 (2011) 9367-9376.

DOI: 10.1039/c1jm11313e

Google Scholar

[2] S. Sista, Z. Hong, L. Chen, Y. Yang, Tandem polymer photovoltaic cells—current status, challenges and future outlook, Energy Environ. Sci. 4 (2011) 1606-1620.

DOI: 10.1039/c0ee00754d

Google Scholar

[3] N.V. Gnanapragasam, B.V. Reddy, M.A. Rosen, Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels, Int. J. Hydrogen Energy 35 (2010) 4788-4807.

DOI: 10.1016/j.ijhydene.2009.10.047

Google Scholar

[4] A. Hauch, S.D. Ebbesen, S.H. Jensen, M. Mogensen, Highly efficient high temperature electrolysis, J. Mater. Chem. 18 (2008) 2331-2340.

DOI: 10.1039/b718822f

Google Scholar

[5] M. Ni, M.K.H. Leung, D.Y.C. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), Int. J. Hydrogen Energy 33 (2008) 2337-2354.

DOI: 10.1016/j.ijhydene.2008.02.048

Google Scholar

[6] K. Xie, Y.Q. Zhang, G.Y. Meng, J.T.S. Irive, Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser, Energy Environ. Sci. 4 (2011) 2218-2222.

DOI: 10.1039/c1ee01035b

Google Scholar

[7] E.C. Shin, P.A. Ahn, H.H. Seo, J.M. Jo, S.K. Woo, Polarization mechanism of high temperature electrolysis in a Ni-YSZ/YSZ/LSM solid oxide cell by parametric impedance analysis, Solid State Ion. 232 (2013) 80-96.

DOI: 10.1016/j.ssi.2012.10.028

Google Scholar

[8] M. Pihlatie, A. Kaiser, M. Mogensen, Redox stability of SOFC: Thermal analysis of Ni-YSZ composites, Solid State Ion. 180 (232) 1100-1112.

DOI: 10.1016/j.ssi.2009.04.011

Google Scholar

[9] S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2 (2003) 320-323.

DOI: 10.1038/nmat871

Google Scholar

[10] S.S. Xu, S.G. Chen, M. Li, K. Xie, Y. Wang, Y.C. Wu, Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-ion-conducting solid oxide electrolyser, J. Power Sources 239 (2013) 332-340.

DOI: 10.1016/j.jpowsour.2013.03.182

Google Scholar

[11] X.B. Zhu, Z. Lu, B. Wei, M.L. Liu, X.Q. Huang, W.H. Su, A comparison of La0. 75Sr0. 25Cr0. 5Mn0. 5O3−δ and Ni impregnated porous YSZ anodes fabricated in two different ways for SOFCs, Electrochim. Acta 55(2010) 3932-3938.

DOI: 10.1016/j.electacta.2010.02.028

Google Scholar

[12] Y. Gan, Q.Q. Qin, S.G. Chen, Y. Wang, D.H. Dong, K. Xie, Composite cathode La0. 4Sr0. 4TiO3-Ce0. 8Sm0. 2O2-δ impregnated with Ni for high-temperature steam electrolysis, J. Power Sources 245 (2014) 245-255.

DOI: 10.1016/j.jpowsour.2013.06.107

Google Scholar

[13] D. Neagu, J.T.S. Irvine, Structure and properties of La0. 4Sr0. 4TiO3 ceramics for use as anode materials in solid oxide fuel cells, Chem. Mater. 22 (2010) 5042-5053.

DOI: 10.1021/cm101508w

Google Scholar

[14] J. Canales-Vazquez, M.J. Smith, J.T.S. Irvine, W.Z. Zhou, Studies on the Reorganization of Extended Defects with Increasing n in the Perovskite-Based La4Srn–4TinO3n+2 Series, Adv. Funct. Mater. 15 (2005) 1000-1008.

DOI: 10.1002/adfm.200400362

Google Scholar