[1]
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev, 104 (2004) 4303-4418.
DOI: 10.1021/cr030203g
Google Scholar
[2]
Z. Y. Chen, B. L. Du, M. Xu, et al., Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: Understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics, Electrocheimica Acta, 109 (2013) 262-268.
DOI: 10.1016/j.electacta.2013.07.159
Google Scholar
[3]
J. Zhou, B. H. Liu, Z. P. Li, Nanostructure optimization of LiFePO4/carbon aerogel composites for performance enhancement, Solid State Ionics, 244 (2013) 23-29.
DOI: 10.1016/j.ssi.2013.05.003
Google Scholar
[4]
H. M. Xie, R. S. Wang, J. R. Ying, et al., Optimized LiFePO4–Polyacene Cathode Material for Lithium-Ion Batteries, Advanced Materials, 18 (2006) 2609-2613.
DOI: 10.1002/adma.200600578
Google Scholar
[5]
K. Zaghib, A. Mauger, J. B. Goodenough, et al., Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects, Chemistry of materials, 19 (2007) 3740-3747.
DOI: 10.1021/cm0710296
Google Scholar
[6]
Z. Li, D. Zhang, F. Yang, Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material, Journal of materials science, 44 (2009) 2435-2443.
DOI: 10.1007/s10853-009-3316-z
Google Scholar
[7]
H. Huang, S. C. Yin, L. F. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochemical and Solid-State Letters, 4 (2001) A170-A172.
DOI: 10.1149/1.1396695
Google Scholar
[8]
H. Tang, J. Xu, Enhanced electrochemical performance of LiFePO4 coated with Li0. 34La0. 51TiO2. 94 by rheological phase reaction method, Materials Science and Engineering: B, 178 (2013) 1503-1508.
DOI: 10.1016/j.mseb.2013.08.014
Google Scholar
[9]
W. J. Sun, C. H. Deng, H. H, et al., Improved cyclic performance of LiFePO4 coated with three-dimensional carbon networks, Materials Letters, 93 (2013) 49-51.
DOI: 10.1016/j.matlet.2012.11.037
Google Scholar
[10]
Q. Zhang, W. W. Jiang, Z. F. Zhou, et al., Enhanced electrochemical performance of Li4SiO4-coated LiFePO4 prepared by sol-gel method and microwave heating, Solid state ionics, 218 (2012) 31-34.
DOI: 10.1016/j.ssi.2012.05.006
Google Scholar
[11]
J. Graetz, C. C. Ahn, R. Yazami, et al., Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities, Journal of The Electrochemical Society, 151 (2004) A698-A702.
DOI: 10.1149/1.1697412
Google Scholar
[12]
C. S. Fuller, J. C. Mobility of impurity ions in germanium and silicon, Severiens, 96 (1954) 21-24.
DOI: 10.1103/physrev.96.21
Google Scholar
[13]
Y. Lin, B. Z. Zeng, Y. B. Lin, et al., Electrochemical properties of carbon-coated LiFePO4 and LiFe0. 98Mn0. 02PO4 cathode materials synthesized by solid-state reaction, Rare Metals, 31 (2012) 145-149.
DOI: 10.1007/s12598-012-0480-0
Google Scholar
[14]
S. Uchida, M. Yamagata, M. Ishikawa, Optimized condition of high-frequency induction heating for LiFePO4 with ideal crystal structure, Journal of Power Sources, 243 (2013) 617-621.
DOI: 10.1016/j.jpowsour.2013.06.051
Google Scholar
[15]
C. H. Mi, X. B. Zhao, G. S. Cao, et al., In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes, Journal of The Electrochemical Society, 152 (2005) A483-A487.
DOI: 10.1149/1.1852438
Google Scholar
[16]
J. Morales, R. Trócoli, E. Rodríguez-Castellón, et al., Effect of C and Au additives produced by simple coaters on the surface and the electrochemical properties of nanosized LiFePO4, Journal of Electroanalytical Chemistry. 631 (2009) 29-35.
DOI: 10.1016/j.jelechem.2009.03.006
Google Scholar
[17]
Y. Lin, M. X. Gao, D. Zhu, et al., Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C, Journal of Power Sources, 184 (2008) 444-448.
DOI: 10.1016/j.jpowsour.2008.03.026
Google Scholar
[18]
M. Konarova, I. Taniguchi, Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries, Journal of Power Sources, 195 (2010) 3661-3667.
DOI: 10.1016/j.jpowsour.2009.11.147
Google Scholar
[19]
Y. Feng, The preparation and electrochemical performances of LiFePO4 multiwalled nanotubes composite cathode materials for lithium ion batteries, Materials Chemistry and Physics, 121 (2010) 302-307.
DOI: 10.1016/j.matchemphys.2010.01.038
Google Scholar
[20]
T. F. Yi, J. Shu, Y. R. Zhu, et al., Advanced electrochemical performance of Li4Ti4. 95V0. 05O12 as a reversible anode material down to 0V, Journal of Power Sources, 195 (2010) 285-288.
DOI: 10.1016/j.jpowsour.2009.07.040
Google Scholar
[21]
H. H. Chang, C.C. Chang, C. Y. Su, et al., Effects of TiO2 coating on high-temperature cycle performance of LiFePO4 based lithium-ion batteries, Journal of Power Sources, 185 (2008) 466-472.
DOI: 10.1016/j.jpowsour.2008.07.021
Google Scholar
[22]
D. Aurbach, B. Markovsky, Y. Talyossef, et al., Studies of cycling behavior, ageing, and interfacial reactions of LiNi0. 5Mn1. 5O4 and carbon electrodes for lithium-ion 5-V cells, J. Power Sources, 162 (2006) 780-789.
DOI: 10.1016/j.jpowsour.2005.07.009
Google Scholar
[23]
Y. K. Sun, K. -J. Hong, Jai Prakash, et al., Electrochemical performance of nano-sized ZnO-coated LiNi0. 5Mn1. 5O4 spinel as 5 V materials at elevated temperatures, Electrochemistry Communications, 4 (2002) 344-348.
DOI: 10.1016/s1388-2481(02)00277-1
Google Scholar
[24]
P. J. Zuo, T. Wang, G. Cheng, et al., Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries, Rsc Advances, 2 (2012) 6994-6998.
DOI: 10.1039/c2ra20552a
Google Scholar
[25]
Y. B. Lin, Y. M. Yang, Y. Lin, et al., Improvement of electrochemical and thermal stability of LiFePO4@C batteries by depositing amorphous silicon film, Electrochimica Acta, 56 (2011) 4937-4941.
DOI: 10.1016/j.electacta.2011.03.134
Google Scholar
[26]
Y. B. Lin, Y. Lin, T. Zhou, et al., Electrochemical performance of LiFePO4/Si composites as cathode material for lithium ion batteries, Materials Chemistry and Physics, 138 (2013) 313-318.
DOI: 10.1016/j.matchemphys.2012.11.062
Google Scholar