Enhanced Electrochemical Performances of LiFePO4/C Cathode Materials by Deposited with Ge Film

Article Preview

Abstract:

LiFePO4/C-Ge electrodes were prepared with vacuum thermal evaporation deposition by depositing Ge films on as-prepared LiFePO4/C electrodes. The effect of Ge film on the electrochemical performances of LiFePO4/C cells was investigated systematically by charge/discharge testing, cyclic voltammograms and AC impedance spectroscopy, respectively. It was found that Ge-film-surface modified LiFePO4/C showed excellent electrochemical performances compared to that of the pristine one in terms of cyclability and rate capability. At 60°C, LiFePO4/C-Ge film exhibited outstanding cyclability with less than 5% capacity fade after 50 cycles while the pristine one suffers 15%. Analysis from the electrochemical measurements showed that the presence of Ge film on the LiFePO4/C electrode would protect active material from HF generated by the decomposition of LiPF6 in the electrolyte and stabilize the surface structure of active material during the charge and discharge cycle. Electrochemical impedance spectroscopy (EIS) results indicated that Ge film mainly reduced the charge transfer resistance Rct of LiFePO4/C electrode, resulting from the suppression of the solid electrolyte interfacial (SEI) film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

480-485

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev, 104 (2004) 4303-4418.

DOI: 10.1021/cr030203g

Google Scholar

[2] Z. Y. Chen, B. L. Du, M. Xu, et al., Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: Understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics, Electrocheimica Acta, 109 (2013) 262-268.

DOI: 10.1016/j.electacta.2013.07.159

Google Scholar

[3] J. Zhou, B. H. Liu, Z. P. Li, Nanostructure optimization of LiFePO4/carbon aerogel composites for performance enhancement, Solid State Ionics, 244 (2013) 23-29.

DOI: 10.1016/j.ssi.2013.05.003

Google Scholar

[4] H. M. Xie, R. S. Wang, J. R. Ying, et al., Optimized LiFePO4–Polyacene Cathode Material for Lithium-Ion Batteries, Advanced Materials, 18 (2006) 2609-2613.

DOI: 10.1002/adma.200600578

Google Scholar

[5] K. Zaghib, A. Mauger, J. B. Goodenough, et al., Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects, Chemistry of materials, 19 (2007) 3740-3747.

DOI: 10.1021/cm0710296

Google Scholar

[6] Z. Li, D. Zhang, F. Yang, Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material, Journal of materials science, 44 (2009) 2435-2443.

DOI: 10.1007/s10853-009-3316-z

Google Scholar

[7] H. Huang, S. C. Yin, L. F. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochemical and Solid-State Letters, 4 (2001) A170-A172.

DOI: 10.1149/1.1396695

Google Scholar

[8] H. Tang, J. Xu, Enhanced electrochemical performance of LiFePO4 coated with Li0. 34La0. 51TiO2. 94 by rheological phase reaction method, Materials Science and Engineering: B, 178 (2013) 1503-1508.

DOI: 10.1016/j.mseb.2013.08.014

Google Scholar

[9] W. J. Sun, C. H. Deng, H. H, et al., Improved cyclic performance of LiFePO4 coated with three-dimensional carbon networks, Materials Letters, 93 (2013) 49-51.

DOI: 10.1016/j.matlet.2012.11.037

Google Scholar

[10] Q. Zhang, W. W. Jiang, Z. F. Zhou, et al., Enhanced electrochemical performance of Li4SiO4-coated LiFePO4 prepared by sol-gel method and microwave heating, Solid state ionics, 218 (2012) 31-34.

DOI: 10.1016/j.ssi.2012.05.006

Google Scholar

[11] J. Graetz, C. C. Ahn, R. Yazami, et al., Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities, Journal of The Electrochemical Society, 151 (2004) A698-A702.

DOI: 10.1149/1.1697412

Google Scholar

[12] C. S. Fuller, J. C. Mobility of impurity ions in germanium and silicon, Severiens, 96 (1954) 21-24.

DOI: 10.1103/physrev.96.21

Google Scholar

[13] Y. Lin, B. Z. Zeng, Y. B. Lin, et al., Electrochemical properties of carbon-coated LiFePO4 and LiFe0. 98Mn0. 02PO4 cathode materials synthesized by solid-state reaction, Rare Metals, 31 (2012) 145-149.

DOI: 10.1007/s12598-012-0480-0

Google Scholar

[14] S. Uchida, M. Yamagata, M. Ishikawa, Optimized condition of high-frequency induction heating for LiFePO4 with ideal crystal structure, Journal of Power Sources, 243 (2013) 617-621.

DOI: 10.1016/j.jpowsour.2013.06.051

Google Scholar

[15] C. H. Mi, X. B. Zhao, G. S. Cao, et al.,  In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes, Journal of The Electrochemical Society, 152 (2005) A483-A487.

DOI: 10.1149/1.1852438

Google Scholar

[16] J. Morales, R. Trócoli, E. Rodríguez-Castellón, et al., Effect of C and Au additives produced by simple coaters on the surface and the electrochemical properties of nanosized LiFePO4, Journal of Electroanalytical Chemistry. 631 (2009) 29-35.

DOI: 10.1016/j.jelechem.2009.03.006

Google Scholar

[17] Y. Lin, M. X. Gao, D. Zhu, et al., Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C, Journal of Power Sources, 184 (2008) 444-448.

DOI: 10.1016/j.jpowsour.2008.03.026

Google Scholar

[18] M. Konarova, I. Taniguchi, Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries, Journal of Power Sources, 195 (2010) 3661-3667.

DOI: 10.1016/j.jpowsour.2009.11.147

Google Scholar

[19] Y. Feng, The preparation and electrochemical performances of LiFePO4 multiwalled nanotubes composite cathode materials for lithium ion batteries, Materials Chemistry and Physics, 121 (2010) 302-307.

DOI: 10.1016/j.matchemphys.2010.01.038

Google Scholar

[20] T. F. Yi, J. Shu, Y. R. Zhu, et al., Advanced electrochemical performance of Li4Ti4. 95V0. 05O12 as a reversible anode material down to 0V, Journal of Power Sources, 195 (2010) 285-288.

DOI: 10.1016/j.jpowsour.2009.07.040

Google Scholar

[21] H. H. Chang, C.C. Chang, C. Y. Su, et al., Effects of TiO2 coating on high-temperature cycle performance of LiFePO4 based lithium-ion batteries, Journal of Power Sources, 185 (2008) 466-472.

DOI: 10.1016/j.jpowsour.2008.07.021

Google Scholar

[22] D. Aurbach, B. Markovsky, Y. Talyossef, et al., Studies of cycling behavior, ageing, and interfacial reactions of LiNi0. 5Mn1. 5O4 and carbon electrodes for lithium-ion 5-V cells, J. Power Sources, 162 (2006) 780-789.

DOI: 10.1016/j.jpowsour.2005.07.009

Google Scholar

[23] Y. K. Sun, K. -J. Hong, Jai Prakash, et al., Electrochemical performance of nano-sized ZnO-coated LiNi0. 5Mn1. 5O4 spinel as 5 V materials at elevated temperatures, Electrochemistry Communications, 4 (2002) 344-348.

DOI: 10.1016/s1388-2481(02)00277-1

Google Scholar

[24] P. J. Zuo, T. Wang, G. Cheng, et al., Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries, Rsc Advances, 2 (2012) 6994-6998.

DOI: 10.1039/c2ra20552a

Google Scholar

[25] Y. B. Lin, Y. M. Yang, Y. Lin, et al., Improvement of electrochemical and thermal stability of LiFePO4@C batteries by depositing amorphous silicon film, Electrochimica Acta, 56 (2011) 4937-4941.

DOI: 10.1016/j.electacta.2011.03.134

Google Scholar

[26] Y. B. Lin, Y. Lin, T. Zhou, et al., Electrochemical performance of LiFePO4/Si composites as cathode material for lithium ion batteries, Materials Chemistry and Physics, 138 (2013) 313-318.

DOI: 10.1016/j.matchemphys.2012.11.062

Google Scholar