A Novel Synthesis of Nanometer Spherical β-Ni(OH)2 Cathode Materials with High Electrochemical Performances

Article Preview

Abstract:

A novel hydrothermal stripping technique synthesis route, in which the nickel-loaded organic phase of naphthenic acid was directly stripped by water at 140-240 °C for 2.0 h to recover nickel as hydroxide precipitates, has been firstly developed. The nickel hydroxide powders synthesized by this route was the spherical β-Ni(OH)2 and had a small particle size in the range of 20-100 nm shown by XRD and TEM test. The results of electrochemical performances show that the nanometer β-Ni(OH)2 cathode materials have much higher discharge specific capacity, excellent capacity retention and cycle performances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

491-495

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.K. Zhang, X.H. Xia, H. Huang, Y.P. Gan, J.B. Wu, J.P. Tu, High-rate discharge properties of nickel hydroxide/carbon composite as positive electrode for Ni/MH batteries, J. Power Sources. 184(2008) 646–651.

DOI: 10.1016/j.jpowsour.2008.03.023

Google Scholar

[2] W. Zhang, W. Jiang, Yu L, Z. Fu, W. Xia, M. Yang, Effect of nickel hydroxide composition on the electrochemical performance of spherical Ni(OH)2 positive materials for Ni–MH batteries, J. Hydrogen Energy. 34(2009) 473– 480.

DOI: 10.1016/j.ijhydene.2008.07.129

Google Scholar

[3] H. Jiang, T. Zhao, C.Z. Li, J. Ma, Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors, J. Mater. Chem. 21(2011) 3818-3823.

DOI: 10.1039/c0jm03830j

Google Scholar

[4] C. Jinho, P. Mira, H. Dukho, S.B. Ogale, S.M. Rajaram, S.H. Han, . Liquid-phase synthesized mesoporous electrochemical supercapacitors of nickel hydroxide, Electrochim. Acta. 53(2008) 5016–5021.

DOI: 10.1016/j.electacta.2008.01.100

Google Scholar

[5] X.Y. Guan, J.C. Deng, Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes, Mater. Lett. 61(2007) 621–625.

DOI: 10.1016/j.matlet.2006.05.026

Google Scholar

[6] D.B. Kuang, B.X. Lei, Y.P. Pan, X.Y. Yu, C.Y. Su, Fabrication of Novel Hierarchical β-Ni(OH)2 and NiO Microspheres via an Easy Hydrothermal Process, J. Phys. Chem. C. 113(2009) 5508–5513.

DOI: 10.1021/jp809013g

Google Scholar

[7] U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, Characterization of honeycomb-like β-Ni(OH)2, thin films synthesized by chemical bath deposition method and their supercapacitor application, J. Power Sources. 188(2009)338–342.

DOI: 10.1016/j.jpowsour.2008.11.136

Google Scholar

[8] X.J. Hana, P. Xu, C.Q. Xu, L. Zhao, Z.B. Mo, T. Liu, Study of the effects of nanometer β-Ni(OH)2 in nickel hydroxide electrodes, Electrochim. Acta. 50(2005) 2763–2769.

DOI: 10.1016/j.electacta.2004.11.025

Google Scholar

[9] L. Kumari, W.Z. Li, Self-assembly of β-Ni(OH)2 nanoflakelets to form hollow submicrospheres by hydrothermal route, Physica E. 41(2009)1289–1292.

DOI: 10.1016/j.physe.2009.02.018

Google Scholar

[10] M.A. Kiani, M.F. Mousavi, S. Ghasemi, Size effect investigation on battery performance: Comparison between micro- and nano-particles of β-Ni(OH)2 as nickel battery cathode material, J. Power Sources. 195(2010) 5794–5800.

DOI: 10.1016/j.jpowsour.2010.03.080

Google Scholar

[11] X.J. Han, P. Xu, C.Q. Xu, L. Zhao, Z.B. Mo, T. Liu, Study of the effects of nanometer β-Ni(OH)2 in nickel hydroxide electrodes, Electrochim. Acta. 50(2005) 2763-2769.

DOI: 10.1016/j.electacta.2004.11.025

Google Scholar

[12] T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal Synthesis of Metal Oxide Fine Particles at Supercritical Conditions, Ind. Eng. Chem. Res. 39, 12(2000) 4901-4907.

DOI: 10.1021/ie0003279

Google Scholar

[13] A.G. Kanaras, C. So¨nnichsen, H. Liu, A.P. Alivisatos, Controlled Synthesis of Hyperbranched Inorganic Nanocrystals with Rich Three-Dimensional Structures, Nano Letts. 5(11) (2005), 2164–2167.

DOI: 10.1021/nl0518728

Google Scholar

[14] L. Dong, Y. Chu, W. Sun, Controllable Synthesis of Nickel Hydroxide and Porous Nickel , Oxide Nanostructures with Different Morphologies, Chem. Eur. J. 14(2008) 5064 – 5072.

DOI: 10.1002/chem.200701627

Google Scholar

[15] D. Chen, L. Gao, A new and facile route to ultrafine nanowires, superthin flakes and uniform nanodisks of nickel hydroxide, Chenical physics letters. 405(2005) 159-164.

DOI: 10.1016/j.cplett.2005.01.121

Google Scholar

[16] M. Fathima Parveen, S. Umapathy, V.D. Hanalakshmi, R. Anbarasan, Synthesis and characterizations of nano-sized Ni(OH)2 and Ni(OH)2/poly(vinyl alcohol) nano composite, J . Mater. Sci . 44 (2009) 5852-5860.

DOI: 10.1007/s10853-009-3826-8

Google Scholar

[17] Y. Konish, T. Kawamura, S. Asai, Preparation and Characterization of Ultrafine Nickel Ferrite Powders by Hydrolysis of Iron(III)−Nickel Carboxylate Dissolved in Organic Solvent, Ind. Eng. Chem. Res. 35, 1(1996) 320-325.

DOI: 10.1021/ie950317l

Google Scholar

[18] Y. Konishi, D. Satoh, K. T akano. Precipitation of Nickel Hydroxide by Hydrolytic Stripping of Nickel Phosphinate Dissolved in Organic Solvent, Ind. Eng. Chem. Res. 41(2002) 3999-4003.

DOI: 10.1021/ie010349a

Google Scholar

[19] Y. Konishi, T. Nomura, D. Satoh, Solvothermal Preparation of Cuprous Oxide Fine Particles by Hydrolysis of Copper(II) Carboxylate in Two-Phase Liquid−Liquid System, Ind. Eng. Chem. Res. 43(2004) 2088-(2092).

DOI: 10.1021/ie0305115

Google Scholar

[20] Y. Konishi, T. Noshiyuki, K. Mizoe, K. Nakata, Preparation of Cobalt Ferrite Nanoparticles by Hydrolysis of Cobalt-Iron (III) Carboxylate Dissolved in Organic Solvent, Mater. Trans. 45, 1(2004) 81~85.

DOI: 10.2320/matertrans.45.81

Google Scholar

[21] X. Y Wang, J.Y. Han, L. Z Lu, H. Q Xie, X. H Kang, Kinetic study of hydrothermal stripping from iron-loaded organic phase, Transactions of Tianjin Univer. 13, 2(2007) 113-116.

Google Scholar

[22] X,Y. Wang, X.H. Kang, H.Q. Xie, L.Z. Lu, Studies of heterogeneous hydrothermal stripping from iron-loaded naphthenic acid-alcohol-kerosene, Chin. J. Process Eng. 3, 2(2003) 109-115.

Google Scholar

[23] X.Y. Wang, X.H. Kang, H.Q. Xie, L.Z. Lu, Preparation of Nanosized α-Fe2O3 by Hydrothermal Stripping Process, J. Appl. Chem. 21, 7(2004) 655-659.

Google Scholar

[24] X.Y. Wang, J.Y. Han., J. Wang, G.Q. Yang, Synthesis of spinel MgFe2O4 nano-powder by hydrothermal stripping Source, Cailiao Gongcheng/J. Mate. Eng. 10(2008)98-100.

Google Scholar

[25] X.Y. Wang, C. Miao, J. Zhou, C. Ma, H.F. Wang, S.Q. Sun, A novel synthesis of spherical LiFePO4 nanoparticles, Mater. Lett. 65(2011) 2096–(2099).

DOI: 10.1016/j.matlet.2011.04.069

Google Scholar

[26] X.Y. Wang, J. Zhou, C. Miao, Y.M. Wang, H.F. Wang, C. Ma, S.Q. Sun, Synthesis and size control of ferric oxide nanoparticles via a hydrothermal stripping route, J. Nanopart Res. 14(2012): 783.

DOI: 10.1007/s11051-012-0783-y

Google Scholar