Hydrogen Storage Mechanism of Fe3O4: A First-Principles Study

Article Preview

Abstract:

The adsorption and dissociative adsorption of a hydrogen molecule on Fetet1- terminated Fe3O4 (111) surfaces are investigated within the framework of density function theory. The surface Fetet1 atom site with the parallel mode of hydrogen molecule is found to be the most stable equilibrium adsorption state. The most possible dissociative adsorption pathway of a hydrogen molecule needs an energy barrier of 2.85 or 2.87 eV at the surface Oa or Oc atom site, and generates a water molecule, remarkably in agreement with Otsuka.K’s conclusion on the reaction condition and hydrogen storage mechanism of Fe3O4 from microscopic point of view. The calculation of the electronic properties of the termination states with the adsorption and dissociative adsorption of a hydrogen molecule shows strong interactions between atomic hydrogen and Fe3O4 (111) surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

515-522

Citation:

Online since:

June 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Otsuka K, Yamada C, Kaburagi T, et al. Hydrogen storage and production by redox of iron oxide for polymer electrolyte fuel cell vehicles, International journal of hydrogen energy. 28 (2003) 335-342.

DOI: 10.1016/s0360-3199(02)00070-8

Google Scholar

[2] Otsuka K, Kaburagi T, Yamada C, et al. Chemical storage of hydrogen by modified iron oxides, Journal of power sources. 122 (2003) 111-121.

DOI: 10.1016/s0378-7753(03)00398-7

Google Scholar

[3] Takenaka S, Kaburagi T, Otsuka K, et al. Storage and supply of hydrogen by means of the redox of the iron oxides modified with Mo and Rh species, J. Catal. 228 (2004) 66-74.

DOI: 10.1016/j.jcat.2004.08.027

Google Scholar

[4] Hacker V, Faleschini G, et al. Usage of biomass gas for fuel cells by the SIR process, J. Power Sources. 71 (1998) 226-230.

DOI: 10.1016/s0378-7753(97)02718-3

Google Scholar

[5] Sun X, Kurahashi M, Pratt A, et al. First-principles study of atomic hydrogen adsorption on Fe3O4 (100), Surface Science. 605 (2011) 1067-1073.

DOI: 10.1016/j.susc.2011.03.006

Google Scholar

[6] Yang T, Wen X D, Huo C F, et al. Structure and energetics of hydrogen adsorption on Fe3O4 (111), Journal of Molecular Catalysis A: Chemical. , 302 (2009) 129-136.

DOI: 10.1016/j.molcata.2008.12.009

Google Scholar

[7] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett. 77 (1996) 3865-3868.

Google Scholar

[8] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett. 78 (1997) 1396.

Google Scholar

[9] Perdew J P, Ruzsinszky A, Tao J, et al. J. Chem. Phys. 123 (2005) 62201.

Google Scholar

[10] Perdew J P, Burke K, Wang Y, Phys. Rev.B. 54 (1996) 16533.

Google Scholar

[11] Milman V, Winkler B, White J A, et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int.J. Quantum Chem. 77(2000) 895-910.

DOI: 10.1002/(sici)1097-461x(2000)77:5<895::aid-qua10>3.0.co;2-c

Google Scholar

[12] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev.B. 41 (1990) 7892–7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[13] Lin J S, Qteish A, Payne M C, et al. Optimized and transferable nonlocal separable ab initio pseudopotentials, Physical Review B. 47 (1993) 4174- 4180.

DOI: 10.1103/physrevb.47.4174

Google Scholar

[14] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations, Physical Review B. 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[15] Pulay P. Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules: I, Theory, Molecular Physics. 17 (1969) 197-204.

DOI: 10.1080/00268976900100941

Google Scholar

[16] Nayak S K, Nooijen M, Bernasek S L, et al. Electronic structure study of CO adsorption on the Fe (001) surface, The Journal of Physical Chemistry B. 105 (2001) 164-172.

DOI: 10.1021/jp002314e

Google Scholar

[17] Cheng H, Reiser D B, Dean S W, et al. Structure and energetics of iron pentacarbonyl formation at an Fe(100) surface, The Journal of Physical Chemistry B. 105 (2001) 12547-12552.

DOI: 10.1021/jp0155112

Google Scholar

[18] Louie S G, Froyen S, Cohen M L. Nonlinear ionic pseudopotentials in spin-density-functional calculations, Physical Review B. 26 (1982) 1738-1742.

DOI: 10.1103/physrevb.26.1738

Google Scholar

[19] Fleet M E. The structure of magnetite, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 37(1981): 917-920.

Google Scholar

[20] Henrich V E, Shaikhutdinov S K. Atomic geometry of steps on metal-oxide single crystals, Surface science. 574 (2005) 306-316.

DOI: 10.1016/j.susc.2004.10.047

Google Scholar

[21] Zhu L, Yao K L, Liu Z L. First-principles study of the polar (111)surface of Fe3O4, Phys Rev B. 74 (2006) 035409-035418.

Google Scholar

[22] Yang T, Wen X D, Ren J, et al. Surface structures of Fe3O4 (111), (110), and (001): A density functional theory study, Journal of Fuel Chemistry and Technology. 38 (2010) 121-128.

DOI: 10.1016/s1872-5813(10)60024-2

Google Scholar

[23] Wu G, Zhang J, Wu Y, et al. The effect of defects on the hydrogenation in Mg (0001) surface, Applied Surface Science. 256 (2009) 46-51.

DOI: 10.1016/j.apsusc.2009.07.065

Google Scholar

[24] Kerr J A. CRC handbook of chemistry and physics 1999-2000: a ready-reference book of chemical and physical data, in: D.R. Lide (Ed. ), CRC Handbook of Chemistry and Physics, 81st ed., CRC Press, Boca Raton, FL, USA, (2000).

DOI: 10.1021/ja041017a

Google Scholar

[25] Szotek Z, Temmerman W M, Svane A, et al. Ab initio study of charge order in Fe3O4, Physical Review B. 68 (2003) 054415-054423.

Google Scholar