[1]
J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, (2004).
Google Scholar
[2]
K. Lücke, The Formation of Recrystallization Textures in Metals and Alloys, Proc. 7-th Int. Conf. on Textures of Materials, Eds. Brakman et al., Noordwijkerhout, The Netherlands, 1984, pp.195-210.
Google Scholar
[3]
K. Piękoś, J. Tarasiuk, K. Wierzbanowski and B. Bacroix, Generalized vertex model of recrystallization – Application to Polycrystalline Copper, Comp. Mat. Sci., 42 (2008) 584-594.
DOI: 10.1016/j.commatsci.2007.09.014
Google Scholar
[4]
K. Piękoś, J. Tarasiuk, K. Wierzbanowski and B. Bacroix, Stochastic vertex model of recrystallization, Comp. Mat. Sci., 42 (2008) 36-42.
DOI: 10.1016/j.commatsci.2007.06.005
Google Scholar
[5]
K. Wierzbanowski, J. Tarasiuk, B. Bacroix, A. Miroux and O. Castelnau, Deformation Characteristics Important for Nucleation Process. Case of Low-Carbon Steels, Arch. Metall., 44 (1999) 183- 201.
Google Scholar
[6]
A. Baczmański, K. Wierzbanowski, J. Tarasiuk, M. Ceretti, A. Lodini, Anisotropy of Micro-Stress - Measured by Diffraction, Revue de Metallurgie, 94 (1997) 1467- 1474.
DOI: 10.1051/metal/199794121467
Google Scholar
[7]
B. Liebmann, K. Lücke, and G. Masing, Untersuchungen über die Orientierungs-abhängigkeit der Wachstumsgeschwindigkeit bei der primaren Rekristallisation von Aluminium-Einkristallen, Z. Metallkde, 47 (1956) 57-63.
DOI: 10.1515/ijmr-1956-470201
Google Scholar
[8]
Y. Huang, F.J. Humphreys, Measurement of Grain Boundary Mobility During Recrystallization of a Single Phase Aluminium Alloy, Acta Mater., 47 (1999) 2259-2268.
DOI: 10.1016/s1359-6454(99)00062-2
Google Scholar
[9]
K. Sztwiertnia, Simulation of Compromise Textures, Arch. Metall., 41 (1996) 101-116.
Google Scholar
[10]
Wierzbanowski, J. Tarasiuk, B. Bacroix, K. Sztwiertnia, P. Gerber, Recrystallization Textures - Two Types of Modelling, Metals and Materials International, 9 (2003) 9-14.
DOI: 10.1007/bf03027223
Google Scholar