Effect of SnO2 Particle Size on Properties of Ag-SnO2 Electrical Contact Materials Prepared by the Reductive Precipitation Method

Article Preview

Abstract:

Performances of Ag-SnO2 electrical contact materials can be strongly affected by the microstructure. In this work, Ag-SnO2 composite powders were synthesized by chemical reductive precipitation method. During the precipitation process, Ag particle was deposited onto the surface of SnO2 particle with the assistance of citric acid. The microstructure and properties were analyzed for the prepared Ag-SnO2 electrical contact materials. Our research reveals that the particle size of SnO2 has significant influence on the morphology of the Ag-SnO2 composite powders, and therefore on the microstructure and physical properties of the electrical contact materials. With the decrease of particle size of SnO2, hardness of the Ag-SnO2 electrical contact materials increases, while electrical conductivity decreases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

459-463

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kratzschmar, R. Herbst, T. Mulzel, R. Niederreuther, P. Braumann, Basic Investigations on the Behavior of Advanced Ag/SnO2 Materials for Contactor Applications, Electrical Contacts (2010) 127-133.

DOI: 10.1109/holm.2010.5619553

Google Scholar

[2] E. Hetzmannseder, W.F. Rieder, Make-and-Break Erosion of Ag/MeO Contact Materials. Components, Packaging, and Manufacturing Technology, Part A 19 (1996) 397-403.

DOI: 10.1109/95.536841

Google Scholar

[3] Ć. Vladan, Ć. Aleksandar, T. Nadežda, Ž. Dragana, M. Dragan, M. Duško, Improving dispersion of SnO2 nanoparticles in Ag-SnO2 electrical contact materials using template method, J. Alloy. Compd. 567 (2013) 33-39.

DOI: 10.1016/j.jallcom.2013.03.094

Google Scholar

[4] T. Z. Yang, Z. J. Du, Y. Y. Gu, X. Y. Qiu, M. X. Jiang, G. Chu, Preparation of AgSnO2 composite powders by hydrothermal process, T. Nonferr. Metal. Soc. 17 (2007) 434-438.

DOI: 10.1016/s1003-6326(07)60111-3

Google Scholar

[5] R. Wolmer, M. Mueller, F. Heringhaus, D. Ruehlicke and D. Goia, U.S. Patent 6, 409, 794. (2002).

Google Scholar

[6] X. M. Liu, S. L. Wu, P. K. Chu, C. Y. Chung, J. Zheng, S. L. Li, Effects of coating process on the characteristics of Ag-SnO2 contact materials. Mater. Chem. Phys. 98 (2006) 477-480.

DOI: 10.1016/j.matchemphys.2005.09.067

Google Scholar

[7] Z.J. Lin, S.H. Liu, X.D. Sun, M. Xie, J.G. Li, X.D. Li, Y.T. Chen, J.L. Chen, D. Huo, M. Zhang, Q. Zhu and M.M. Liu, The effects of citric acid on the synthesis and performance of silver-tin oxide electrical contact materials, J. Alloy. Compd. 588 (2014).

DOI: 10.1016/j.jallcom.2013.10.222

Google Scholar

[8] Y. L. Chen, C. F. Yang, J. W. Yeh, S. S. Hung, S. W. Lee, A novel process for fabricating electrical contact SnO2/Ag composites by reciprocating extrusion, Metall. Mat. Trans. A. 36 (2005) 2441-2447.

DOI: 10.1007/s11661-005-0117-0

Google Scholar

[9] C.H. Xu, D.Q. Yi, C.P. Wu, H.Q. Liu, W.Z. Li, Microstructures and properties of silver-based contact material fabricated by hot extrusion of internal oxidized Ag-Sn-Sb alloy powders, Mat. Sci. Eng. A 538 (2012) 202-209.

DOI: 10.1016/j.msea.2012.01.031

Google Scholar

[10] F. Heringhaus, P. Braumann, D. Rühlicke, E. Susnik, R. Wolmer, On the improvement of dispersion in Ag-SnO2-based contact materials, proceedings of 20th International conference on Electrical contacts, (2000).

Google Scholar

[11] Y.G. Du, S.X. Bai, Y. Yi, J.C. Zhang, The resistance of tin-oxide particulate-reinforced silver composite materials, J. Funct. Mater. 25 (1994) 150-153.

Google Scholar