Assessments of Impurity Diffusion Coefficients of Selected Pure Metals in Fcc Fe

Article Preview

Abstract:

Abstract: The atomic mobilities for impurity diffusion of Al, Au, Co, Cu, Mn, Mo, Nb, Ni, Pt, Sn and Zn in fcc Fe have been critically assessed based on the experimental diffusion coefficient data available in the literature. The impurity diffusion coefficients calculated from the atomic mobilities agree reasonably well with the reliable experimental data. This work provides a helpful guidance for the establishment of a general Fe-based mobility database to design new Fe-based alloys for practical purposes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

545-551

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. -O. Andersson, L. Hoglund, B. Jonsson, J. Agren, in: G.R. Purdy (Ed. ), Fundamentals and Applications of Ternary Diffusion, Pergamon Press, New York, 1990, p.153.

Google Scholar

[2] B. Jönsson, Assessment of the mobilities of Cr, Fe and Ni in binary FCC Cr-Fe and Cr-Ni alloys, Scand. J. Metall. 24 (1995) 21-27.

DOI: 10.2355/isijinternational.35.1415

Google Scholar

[3] B. Jönsson, Mobilities in Fe-Ni alloys: assessment of the mobilities of Fe and Ni in fcc Fe-Ni alloys, Scand. J. Metall. 23 (1994) 201-208.

DOI: 10.2355/isijinternational.35.1415

Google Scholar

[4] A. Borgenstam, A. Engstrom, L. Hoglund, J. Agren, DICTRA, a tool for simulation of diffusion transformations in alloys, J. Phase Equilib. 21 (2000) 269-280.

DOI: 10.1361/105497100770340057

Google Scholar

[5] Y. Du, J.C. Schuster, Assessment of Diffusional Mobilities of Cr, Ni, and Si in fcc Cr-Ni-Si Alloys, Z. Metallkd. 92 (2001) 28-31.

Google Scholar

[6] Y. Du, J.C. Schuster, An effective approach to describe growth of binary intermediate phases with narrow ranges of homogeneity, Metall. Mater. Trans. A 32 (2001) 2396-2400.

DOI: 10.1007/s11661-001-0214-7

Google Scholar

[7] C.E. Campbell, W.J. Boettinger, U.R. Kattner, Development of a diffusion mobility database for Ni-base superalloys, Acta Mater. 50 (2002) 775-792.

DOI: 10.1016/s1359-6454(01)00383-4

Google Scholar

[8] J. -O. Andersson, T. Helander, L.H. Hoglund, et al. Thermo-Calc and DICTRA, computational tools for materials science, Calphad 26 (2002)273-312.

DOI: 10.1016/s0364-5916(02)00037-8

Google Scholar

[9] J. -O. Andersson, J. Ågren, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys. 72 (1992) 1350-1355.

DOI: 10.1063/1.351745

Google Scholar

[10] B. Jönsson, Assessment of the Mobilities of Cr, Fe and Ni in bcc Cr-Fe-Ni Alloys, ISIJ Int. 35 (1995) 1415-1421.

DOI: 10.2355/isijinternational.35.1415

Google Scholar

[11] G. Ghosh, Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints, Acta Mater. 49 (2001) 2609-2624.

DOI: 10.1016/s1359-6454(01)00187-2

Google Scholar

[12] T. Helander, J. Ågren, A phenomenological treatment of diffusion in Al-Fe and Al-Ni alloys having B2-bcc ordered structure, Acta Mater. 47 (1999) 1141-1152.

DOI: 10.1016/s1359-6454(99)00010-5

Google Scholar

[13] T. Helander, J. Ågren, Diffusion in the B2-bcc phase of the Al-Fe-Ni system application of a phenomenological model, Acta Mater. 47 (1999) 3291-3300.

DOI: 10.1016/s1359-6454(99)00174-3

Google Scholar

[14] B. Jönsson, On Ferromagnetic Ordering and Lattice Diffusion: A Simple Model, Z. Metallkd. 83 (1992) 349-355.

Google Scholar

[15] B. Jönsson, Ferromagnetic Ordering and Diffusion of Carbon and Nitrogen in bcc Cr-Fe-Ni Alloys, Z. Metallkd., 85 (1994) 498-501.

DOI: 10.1515/ijmr-1994-850707

Google Scholar

[16] G. Neumann, C. Tuijn, Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, first ed., Great Britain, (2009).

Google Scholar

[17] L.A. Akimova, V.M. Mironov, A.V. Pokoyev, Fiz. Met. Metalloved. 56 (1983) 1225.

Google Scholar

[18] D. Bergner, Y. Khaddour, Impurity and Chemical Diffusion of Al in BCC and FCC Iron, Defect and Diffusion Forum 95-98 (1993) 709-714.

DOI: 10.4028/www.scientific.net/ddf.95-98.709

Google Scholar

[19] Y. Yamazaki, Y. Iijima, M. Okada, Enhanced diffusion of Au in γ-Fe by vacancies induced under elevated hydrogen pressure, Acta Mater. 52 (2004) 1247-1254.

DOI: 10.1016/j.actamat.2003.11.008

Google Scholar

[20] R.J. Borg, D.Y.F. Lai, Acta Metall. The diffusion of gold, nickel, and cobalt in alpha iron: A study of the effect of ferromagnetism upon diffusion, 11 (1963) 861.

DOI: 10.1016/0001-6160(63)90055-5

Google Scholar

[21] T. Suzuoka, Lattice diffusion and grain boundary diffusion of cobalt·in Iron, Trans. Jpn. Inst. Metals 2 (1961) 176-181.

DOI: 10.2320/matertrans1960.2.176

Google Scholar

[22] M. Badia, A. Vignes, Iron, nickel and cobalt diffusion in transition metals of iron group, Acta Metall. 17 (1969) 177-187.

Google Scholar

[23] K. Hirano, M. Cohen, Diffusion of Cobalt in Iron-Cobalt Alloys, Trans. Jpn. Inst. Metals 13 (1972) 96.

DOI: 10.2320/matertrans1960.13.96

Google Scholar

[24] G. Henry, G. Barreau, G. Cizcron, Coefficients of volume diffusion of Co in gamma Fe and in Fe-Co alloys, C. R. Acad. Sci., (Paris) 280 (1975) 1007-1010.

Google Scholar

[25] G.R. Speich, J.A. Gula, R.M. Fisher, T.D. McKinley, K.F.J. Heinrich, D.B. Wittry (Eds. ), The Electron Microprobe, Wiley, New York, 1966, pp.525-542.

Google Scholar

[26] S.J. Rothman, N.L. Peterson, C.M. Walter, L.J. Nowicki, The Diffusion of Copper in Iron, J. Appl. Phys. 39 (1968) 5041.

Google Scholar

[27] S. Tsuji, K. Yamanaka, Interdiffusion Coefficients and Moving Rates of Phase Interfaces for Reaction-Diffusion in the Cu-Fe System, J. Jpn. Inst. Metals 38 (1974) 415-421.

DOI: 10.2320/jinstmet1952.38.5_415

Google Scholar

[28] G. Salje, M. Feller-Kniepmeier, The diffusion and solubility of copper in iron, J. Appl. Phys. 48 (1977) 1833-1839.

DOI: 10.1063/1.323934

Google Scholar

[29] K. Nohara, K. Hirano, Proceedings of International Conference on Science and Technology of Iron and Steel, Trans. Iron Steel Inst. Jpn. (Suppl. ) 11 (1971) 1267.

Google Scholar

[30] B. Sparke, D.W. James, G.M. Leak, J. Iron Steel Inst. 203 (1965) 152.

Google Scholar

[31] S. Kurokawa, J.E. Ruzzante, A.M. Hey, F. Dyment, Diffusion of Nb in Fe and Fe alloys, Met. Sci. 17 (1983) 433-438.

DOI: 10.1179/030634583790420628

Google Scholar

[32] J. Geise, Ch. Herzig, Lattice and grain boundary diffusion of niobium in iron, Z. Metallk. 76 (1985) 622-626.

DOI: 10.1515/ijmr-1985-760907

Google Scholar

[33] K. Nohara, K. -I. Hirano, Self-diffusion in the iron-molybdenum system. [Impurity diffusivity of Mo in pure Fe. Transformations], J. Jpn. Inst. Metals 40 (1976) 1053-1061.

Google Scholar

[34] J.R. MacEwan, J.U. MacEwan, L. Yaffe, Diffusion of Ni63 in iron, cobalt, nickel, and two iron-nickel alloys, Can. J. Chem. 37 (1959) 1629-1636.

DOI: 10.1139/v59-237

Google Scholar

[35] B. Million, J. Kučera, Diffusion of Pt-193 m in platinum, gamma-iron, cobalt and nickel, Kovové Mater. 11 (1973) 300-306.

Google Scholar

[36] K. Kimura, Y. Iijima, K. Hirano, Diffusion of tin in gamma-iron, Trans. Jpn. Inst. Metals 27 (1986) 1-4.

Google Scholar

[37] S. Budurov, P. Kovatchev, Z. Kamenova, Chemical diffusion of zinc into gamma- and alpha-iron, Z. Metallk. 64 (1973) 652-654.

DOI: 10.1515/ijmr-1973-640910

Google Scholar