The Properties of a Novel Green Long Afterglow Phosphor Zn2GeO4:Mn2+0.01, Pr3+0.01

Article Preview

Abstract:

The sunlight-excited red long afterglow phosphor ZnGa2O4:Cr3+ was prepared by the high-temperature solid state reaction. The emission lines around 690nm all originated from 2E→4A2 of Cr3+ ions. The long-lasting phosphorescence (LLP) spectra indicated optimal long-lasting luminescence could obtain from ultraviolet (UV) light excitation. The thermoluminescence (TL) curve implied different depth of trap was caused by the dopant ions. The initial persistent luminescence was caused by the recombination between the captured electrons and Cr3+ ions, and this recombination process was accomplished through the conduction band. The linear dependence of the long afterglow intensity versus time in the decay curve maybe implied a new recombination mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

552-561

Citation:

Online since:

June 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.Y. Wu, Y.H. Hu, Y.H. Wang, C.J. Fu, J. Alloys Compd. 497 (2010) 330-335.

Google Scholar

[2] Z.X. Yuan, C.K. Chang, D.L. M, W.J. Ying, J. Alloys Compd. 377 (2004) 268-271.

Google Scholar

[3] Z.S. Liu, X.P. Jiang, L.X. Wang, J. Electrochem. Soc. 154 (2007) H500-H506.

Google Scholar

[4] Q.H. Zhang, J. Wang, Appl. Phys A. 108 (2012) 943-948.

Google Scholar

[5] S. Takeshit, J. Honda, T. Isobe, T. Sawayama, S. Niikura, J. Solid State Chem. 189 (2012) 112-116.

Google Scholar

[6] M.M. Shang, G.G. Li, D. M. Yang, X.J. Kang, C. Peng, Z.Y. Cheng, J. Lin, Dalton Trans. 40 (2011) 9379-9387.

Google Scholar

[7] T. Sanada, H. Seto, Y. Morimoto, K. Yamamoto, N. Wada, K. Kojima, J. Sol-Gel Sci Technol. 56 (2010) 82-86.

DOI: 10.1007/s10971-010-2278-6

Google Scholar

[8] P.J. Yadav, C.P. Joshi, S.V. Moharil, J. Lumin. 132(2012) 2799-2801.

Google Scholar

[9] M.Y. Tsai, C.Y. Yu, C. C . Wang, T.P. Perng, Cryst. Growth Des. 8(2008) 2264-2269.

Google Scholar

[10] M. Vasile, P. Vlazan, N.M. Avram, J. Alloys Compd. 500 (2010) 185-189.

Google Scholar

[11] M.Y. Peng, Z.W. Pei, G.Y. Hong, Q. Su, J. Chem. Phys. Lett. 371 (2003) 1-6.

Google Scholar

[12] Q.S. Qing, M.H. Yu , H.L. Zhou, J.C. Zhang, Acta Phys. Sin. 60 (2011) 0678021-8.

Google Scholar

[13] D.W. Cook, B.L. Bennett, E.H. Farnum, W.L. Hults, Appl. Phys. Lett. 70(1997) 3594-3596.

Google Scholar

[14] E.W. Forsythe, D.C. Morton, C.W. Tang, Y.L. Gao, Appl. Phys. Lett. 73(1998) 1457-1459.

Google Scholar

[15] J.T. Randall, M.H.F. Wilkins, Proc. Royal. Soc. A. 184(1945) 366-389.

Google Scholar

[16] S.W.S. Mckeever, Thermoluminescence of solids, Cambridge university press, Cambridge, 1985, p.99.

Google Scholar

[17] T. Matsuzawa,Y. Aoki,N. Takeuchi, J. Electrochem. Soc. 143 (1996) 2670-2673.

Google Scholar

[18] F.L. Song, D.H. Chen, Y.H. Yuan, J. Alloys Compd. 458 (2008) 564-568.

Google Scholar

[19] H. Furusho, J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, Y. Okajima, A. Yamamoto, J. Lumin. 128 (2008) 881-884.

DOI: 10.1016/j.jlumin.2007.11.047

Google Scholar

[20] J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, G. Spano, J. Alloys Compd. 374 (2004) 56-59.

DOI: 10.1016/j.jallcom.2003.11.064

Google Scholar

[21] H.Y. Wu, Y.H. Hu, Y.H. Wang, B.D. Zeng, Z.F. Mou, J. Alloys Compd. 486 (2009) 549-553.

Google Scholar