Cooperative Energy Transfer of Er-Gd-Tb System in Tb3+, Er3+ Co-Doped K2GdZr(PO4)3 as a Potential Visible Quantum Cutting Phosphor

Article Preview

Abstract:

Tb3+, Er3+ co-doped K2GdZr (PO4)3 samples were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicate that the energy transfers from Er3+ to Gd3+ and from Gd3+ to Tb3+ required for occurring of visible quantum cutting through down-conversion are efficient. In this cooperative energy transfer process, Gd3+ is used as an intermediate of energy transfer between Er3+ and Tb3+. The optimal quantum efficiency (QE) of this co-doped system K2GdZr (PO4)3 : Er3+, Tb3+ phosphor reached to 110%, suggesting a potential visible quantum cutting phosphor in practical application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

585-590

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. F. Li, M. Yin, H. Guo, V. N. Makhov, N. M. Khaidukov, J. C. Krupa, J. Phys.: Condens. Matter 15 (2003) 7117.

Google Scholar

[2] R. P. Rao, D. J. Devine, J. Lumin. 87–89 (2000) 1260.

Google Scholar

[3] R. T. Wegh, H. Donker, E. V. D. van Loef, K. D. Oskam, A. Meijerink, J. Lumin. 87–89 (2000) 1017.

DOI: 10.1016/s0022-2313(99)00514-1

Google Scholar

[4] Y. R. Do, J. W. Bae, J Appl Phys. 88 (2000) 4660.

Google Scholar

[5] N. Murase, C. L. Li, J. Lumin. 128 (2008) 1896.

Google Scholar

[6] B. Moine, L. Beauzamy, P. Gredin, G. Wallez, J. Labeguerie, Opt. Mater. 30 (2008) 1083.

DOI: 10.1016/j.optmat.2007.05.015

Google Scholar

[7] Q.Y. Zhang, X.Y. Huang, Prog. Mater Sci. 55 (2010) 353.

Google Scholar

[8] E. van der Kolk, P. Dorenbos, A. P. Vink, R. C. Perego, C. W. E. van Eijk, A. R. Lakshmanan, Phys. Rev. B. 64 (2001) 195129.

Google Scholar

[9] K. D. Oskam, R. T. Wegh, H. Donker, E. V. D. van Loef , A. Meijerink, J. Alloys. Compd. 300–301 (2000) 421.

DOI: 10.1016/s0925-8388(99)00755-0

Google Scholar

[10] T. Jüstel, H. Nikol: Adv. Mater. 12 (2000) 527.

Google Scholar

[11] I. V. Ogorodnyk, I. V. Zatovsky, V. N. Baumer, N. S. Slobodyanik, O. V. Shishkin, Cryst. Res. Technol. 42 (2007) 1076.

DOI: 10.1002/crat.200710961

Google Scholar

[12] R.T. Wegh, E.V.D. van Loef, A. Meijerink, J. Lumin. 90 (2000) 111.

Google Scholar

[13] Q. H. Xu, B. C. Lin, Y. L. Mao, J. Lumin. 128 (2008) (1965).

Google Scholar

[14] L.Y. Zhou, J. S. Wei, J. X. Shi, M. L. Gong, H. B. Liang, J. Lumin. 128 (2008) 1262.

Google Scholar

[15] N. Jaba, M. Ajroud, G. Panczer, M. Férid, H. Maaref, Opt. Mater. 32 (2010) 479.

DOI: 10.1016/j.optmat.2009.10.007

Google Scholar

[16] P. S. Peijzel, A. Meijerink, Chem. Phys. Lett. 401 (2005) 241.

Google Scholar

[17] T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, C. Y. Tung, Appl. Phys. Lett. 89 (2006) 131121.

Google Scholar

[18] H. Y. Tzeng, B. M. Cheng, T. M. Chen, J. Lumin. 122–123 (2007) 917.

Google Scholar

[19] Q. Y. Zhang, C. H. Yang, Y. X. Pan, Appl. Phys. Lett. 90 (2007) 021107.

Google Scholar

[20] H. Kondo, T. Hirai, S. Hashimoto, J. Lumin. 102–103 (2003) 727.

Google Scholar

[21] W. Liang, Y. H. Wang, Mater. Chem. Phys. 119 (2010) 214.

Google Scholar