[1]
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science, 332 (2011) 1537-1541.
DOI: 10.1126/science.1200770
Google Scholar
[2]
P. Yu, X. Zhang, Y. Chen, Y.W. Ma, Z.P. Qi, Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method, Mater. Chem. Phys., 118 (2009) 303-307.
DOI: 10.1016/j.matchemphys.2009.07.057
Google Scholar
[3]
Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors, Carbon, 49 (2011) 2917-2925.
DOI: 10.1016/j.carbon.2011.02.068
Google Scholar
[4]
Z.J. Li, B.C. Yang, S.R. Zhang, C.M. Zhao, Graphene oxide with improved electrical conductivity for supercapacitor electrodes, Appl. Surf. Sci., 258 (2012) 3726-3731.
DOI: 10.1016/j.apsusc.2011.12.015
Google Scholar
[5]
C.S. Liao, C.T. Liao, C.Y. Tso, H.J. Shy, Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites, Mater. Chem. Phys., 130 (2011) 270-274.
DOI: 10.1016/j.matchemphys.2011.06.038
Google Scholar
[6]
S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene Oxide-MnO2 Nanocomposites for supercapacitors, Am. Chem. Soc. Nano., 4 (2010) 2822-2830.
DOI: 10.1021/nn901311t
Google Scholar
[7]
L. Li, Z. Du, S. Liu, Q. Hao, Y. Wang, Q. Li, T. Wang, A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite, Talanta, 82 (2010) 1637-1641.
DOI: 10.1016/j.talanta.2010.07.020
Google Scholar
[8]
J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors, Carbon, 48 (2010) 1731-1737.
DOI: 10.1016/j.carbon.2010.01.014
Google Scholar
[9]
G. Arabale, D. Wagh, M. Kulkarni, I.S. Mulla, S.P. Vernekar, K. Vijayamohanan, A.M. Rao, Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide, Chem. Phys. Lett., 376 (2003) 207-213.
DOI: 10.1016/s0009-2614(03)00946-1
Google Scholar
[10]
Z. Fan, Z. Qie, T. Wei, J. Yan, S. Wang, Preparation and characteristics of nanostructured MnO2/MWCNTs using microwave irradiation method, Mater. Lett., 62 (2008) 3345-3348.
DOI: 10.1016/j.matlet.2008.02.060
Google Scholar
[11]
J. Yan, Z. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L. Song, M. Zhang, Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities, J Power Sources, 194 (2009) 1202-1207.
DOI: 10.1016/j.jpowsour.2009.06.006
Google Scholar
[12]
X. Jin, W. Zhou, S. Zhang, G.Z. Chen, Nanoscale microelectrochemical cells on carbon nanotubes, Small, 3 (2007) 1513-1517.
DOI: 10.1002/smll.200700139
Google Scholar
[13]
E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, F. Beguin, Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J Electrochem. Soc., 152 (2005) A229-A235.
DOI: 10.1149/1.1834913
Google Scholar
[14]
K. Wang, T. Feng, M. Qian, H. Ding, Y. Chen, Z. Sun, The field emission of vacuum filtered graphene films reduced by microwave, Appl. Surf. Sci., 257 (2011) 5808-5812.
DOI: 10.1016/j.apsusc.2011.01.109
Google Scholar
[15]
J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, J.M. Bermúdez, Microwave heating processes involving carbon materials, Fuel Process. Technol., 91 (2010) 1-8.
DOI: 10.1016/j.fuproc.2009.08.021
Google Scholar
[16]
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J Am. Chem. Soc., 80 (1958) 1339-1339.
DOI: 10.1021/ja01539a017
Google Scholar
[17]
L.F. Lai, L. L.W. Chen, D. Zhan, L. Sun, J.P. Liu, S.H. Lim, C.K. Poh. Z.X. Shen, J.Y. Lin, One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties, Carbon, 49 (2011) 3250-3257.
DOI: 10.1016/j.carbon.2011.03.051
Google Scholar