First-Principles Investigations of Electronic, Dynamic and Thermodynamic Properties of α-MnO2

Article Preview

Abstract:

We investigate the electronic, dynamic and thermodynamic properties of α-MnO2 using first-principles calculations based on density functional theory (DFT) with the GGA+U method. The results of electronic structures show that α-MnO2 is a semiconductor with a direct band gap of 1.4 eV at Γ point. The results of dynamic properties indicate that the structure of α-MnO2 is dynamically unstable at ground-state. Several important thermodynamic quantities, such as entropy, enthalpy and Gibbs free energy, et al each as a function of temperature were presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

591-595

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.L. Suib, J. Mater. Chem. 18 (2008) 1623.

Google Scholar

[2] A.R. Armstrong, P.G. Bruce, Nature 381 (1996) 499.

Google Scholar

[3] B. Annundsen, J. Paulsen, Advan. Mater. 13 (2001) 943.

Google Scholar

[4] W. Xiao, H. Xia, J.Y.H. Fuh, L. Lu, J. Power Sources 193 (2009) 935.

Google Scholar

[5] M.W. Xu, W. Jia , S.J. Bao, Z. Su, B. Dong, Electrochimica Acta 55 (2010) 5117.

Google Scholar

[6] D.Y. Sung, I.Y. Kim, T.W. Kim, M.S. Song, S.J. Hwang, J. Phys. Chem. C 115 (2011) 13171.

Google Scholar

[7] Y.C. Chen Y.K. Hsu, Y.G. Lin, Y.K. Lin, Y.Y. Horng, L.C. Chen, K.H. Chen, Electrochimica Acta 56 (2011) 7124.

Google Scholar

[8] T. Gao, H. Fjellvag, P. Norby, Anal. Chim. Acta 648 (2009) 235.

Google Scholar

[9] Y.J. Yang, C.D. Huang, J. Solid State Electrochem. 14 (2010) 1293.

Google Scholar

[10] S. Lee, B. Choi, N. Hamasuna, C. Fushimi, A. Tsutsumi, J. Power Sources 181 (2008) 177.

Google Scholar

[11] H. Sato, T. Enoki, M. Isobe,Y. Ueda, Phys. Rev. B 61 (2000) 3563.

Google Scholar

[12] C.H. Kim, Z. Akase, L. Zhang, A.H. Heuer, A.E. Newman, P.J. Hughes, J. Solid State Chem. 179 (2006) 753.

Google Scholar

[13] H. Li, W. Wang, F. Pan, X. Xin, Q. Chang, X. Liu, Mater. Sci. Eng. B 176 (2011) 1054.

Google Scholar

[14] R. Zhang, X. Yu, K.W. Nam, C. Ling, T.S. Arthur, W. Song, A.M. Knap, S.N. Ehrlich, X.Q. Yang, M. Matsui, Electrochem. Comun. 23 (2012) 110.

Google Scholar

[15] C. Franchini, Podloucky, J. Paier, M. Marsman, G. Kresse, Phys. Rev. B 75 (2007) 195128.

Google Scholar

[16] E. Cockayne, L. Li, Chem. Phys. Lett. 544 (2012) 53.

Google Scholar

[17] S. Massidda, A. Continenza, M. Posternak, A. Baldereschi, Phys. Rev. Lett. 74 (1995) 2323.

Google Scholar

[18] X. Feng, Phys. Rev. B 69 (2004) 155107.

Google Scholar

[19] J.E. Post, Proc. Natl. Acad. Sci. USA 96 (1999) 3447.

Google Scholar

[20] S. Clark, M. Segall, C. Pickard, P. Hasnip, K. Refson, M. Payne, Z. Kristallogr. 220 (2005) 567.

Google Scholar

[21] V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.: Condes. Matter 9 (1997) 767.

Google Scholar

[22] Hao, X. Yang, L. Zhang, Y. Zhu, J. Phys. Chem. Solids 74 (2013) 1504.

Google Scholar

[23] E. Tuncel, K. Colakoglu, E. Deligoz, Y.O. Ciftci, J. Phys. Chem. Solids 70 (2009) 371.

Google Scholar