[1]
Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization, Journal of Applied Physics, 84 (1998) 81-98.
DOI: 10.1063/1.368595
Google Scholar
[2]
J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, and G. A. Sawatzky, Electronic structure of Cu2O and CuO, Physics Review B, 38 (1988) 322-330.
Google Scholar
[3]
D.H. Yoon, J.H. Yu, and G.M. Choi, CO gas sensing properties of ZnO-CuO composite, Sensors and Actuators B, 46 (1998) 15-23.
DOI: 10.1016/s0925-4005(97)00317-1
Google Scholar
[4]
E.N. Muhamad, R. Irmawati, Y.H. Taufiq-Yap, A.H. Abdullah, B.L. Kniep, F. Girgsdies b, T. Ressler, Comparative study of Cu/ZnO catalysts derived from different precursors as a function of aging, Catalysis Today, 131 (2008) 118-124.
DOI: 10.1016/j.cattod.2007.10.010
Google Scholar
[5]
P. K. Sharma, R. K. Dutta, A. C. Pandey, Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO: Cu2+ nanorods, Journal of Magnetism and Magnetic Materials, 321 (2009) 4001-4005.
DOI: 10.1016/j.jmmm.2009.07.066
Google Scholar
[6]
D.Y. Benjamin and P. Yang, Nanowire-Based All-Oxide Solar Cells, Journal of American Chemistry Society, 131 (2009) 3756-3761.
Google Scholar
[7]
M. B. Rahmani, S. H. Keshmiri, M. Shafiei, K. Latham, W. Wlodarski, J. du Plessis, and K. Kalantar-Zadeh, Transition from n- to p-Type of Spray Pyrolysis Deposited Cu Doped ZnO Thin Films for NO2 Sensing, Sensor Letters, 7 (2009) 1-8.
DOI: 10.1166/sl.2009.1121
Google Scholar
[8]
H. Ma, L. Yue, C. Yu, X. Dong, X. Zhang, M. Xue, X. Zhang and Y. Fu, Synthesis, characterization and photocatalytic activity of Cu-doped Zn/ZnO photocatalyst with carbon modification, Journal of Materials Chemistry, 22 (2012) 23780-23788.
DOI: 10.1039/c2jm35110b
Google Scholar
[9]
L. Chowa, O. Lupana, G. Chaia, H. Khallafa, L.K. Onoa, B. Roldan Cuenyaa, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte, Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response, Sensors and Actuators A: Physical, 189 (2013).
DOI: 10.1016/j.sna.2012.09.006
Google Scholar
[10]
G.K. Mani, J.B.B. Rayappan, Influence of copper doping on structural, optical and sensing propertiesof spray deposited zinc oxide thin films, Journal of Alloys and Compounds 582 (2014) 414–419.
DOI: 10.1016/j.jallcom.2013.07.146
Google Scholar
[11]
S. Wei, Y. Chen, Y. Ma, Z. Shao, Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance, Journal of Molecular Catalysis A: Chemical, 331 (2010) 112–116.
DOI: 10.1016/j.molcata.2010.08.011
Google Scholar
[12]
J.G. Lu, Z.Z. Ye, L. Wang, B.H. Zhao, J.Y. Huang, Preparation and properties of N-doped p-type ZnO films by solid sorce chemical vapor deposition with the c-axis parallel to the substrate, Chinese Physics Letter, 19 (2002) 1494-1497.
DOI: 10.1088/0256-307x/19/10/329
Google Scholar
[13]
Z. Fan, P. Chang, and Jia G. Lu, Photoluminescence and polarized photodetection of single ZnO nanowires, Applied Physics Letters, 85 (2004) 6128-6130.
DOI: 10.1063/1.1841453
Google Scholar
[14]
Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, and B. K. Tay, Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air, Journal of Applied Physics, 94 (2003) 354-358.
DOI: 10.1063/1.1577819
Google Scholar
[15]
R.B. M Cross, M.M.D. Souza and E.M. Sankara Narayanan, A low temperature combination method for the production of ZnO nanowires, Nanotechnology, 16 (2005) 2188-2192.
DOI: 10.1088/0957-4484/16/10/035
Google Scholar
[16]
B. Lin, Z. Fu, and Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett. 79 (2001) 943.
DOI: 10.1063/1.1394173
Google Scholar