Effect of Crosslinker Type on the Properties of Surface-Crosslinked Poly(sodium acrylate) Superabsorbents

Article Preview

Abstract:

A series of poly (sodium acrylate) superabsorbents hydrogels were synthesized through aqueous solution using N,N-methylenebisacrylamide (NNMBA), pentaerythritol triacrylate (PETA), ethylene glycol dimethacrylate (EGDMA) and dimethyl diallyl ammonium chloride (DMDAAC) as crosslink agents separately to investigate the effect of crosslinker type on the properties of acrylic-based superabsorbents. Furthermore, the polymers were surface-crosslinked using trimethylolpropane triglycidyl ether to improve the properties of swollen hydrogel. The morphology of the samples was characterized by scanning electron microscope (SEM). The swelling behaviors in 0.9 wt% NaCl aqueous solution and synthetic urine were investigated, and the compressive strength, salt sensitivity and water retention ability were also investigated. The results showed that the superabsorbent crosslinked by PETA which was a three-functional agent had the most water absorbency under load and the highest compressive strength compared with others, while the superabsorbent crosslinked by DMDAAC which was a cationic crosslinker had the best salt resistance and the most water absorbency under atmospheric pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-94

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Kabiri, H. Omidian, M.J. Zohuriaan-Mehr, S. Doroudiani, Superabsorbent Hydrogel Composites and Nanocomposites: A Review, Polym. Composite. 32 (2011) 277-289.

DOI: 10.1002/pc.21046

Google Scholar

[2] M. J. Zohuriaan-Mehr, H. Omidian, S. Doroudiani, K. Kabiri. Advances in non-hygienic applications of superabsorbent hydrogel materials. J. Mater. Sci. 45 (2010) 5711-5735.

DOI: 10.1007/s10853-010-4780-1

Google Scholar

[3] Y.H. Zhang, L.M. Wang, X.H. Li, Salt-resistant superabsorbents from inverse-suspension polymerization of PEG methacrylate acryamide and partially neutralized acrylic acid, J. Polym. Res., 18 (2011) 157-161.

DOI: 10.1007/s10965-010-9402-8

Google Scholar

[4] G.B. Marandi, S. Hariri, G.R. Mahdavinia, Effect of hydrophobic monomer on the synthesis and swelling behaviour of a collagen-graft-poly[(acrylic acid)-co-(sodium acrylate)] hydrogel. Polym. Int. 58 (2009) 227-235.

DOI: 10.1002/pi.2520

Google Scholar

[5] P.S. Liu, L. Li, N.L. Zhou, et al., Synthesis and properties of a poly(acrylic acid)/montmorillonite superabsorbent nanocomposite. J. Appl. Polym. Sci. 102 (2006) 5725-5730.

DOI: 10.1002/app.25090

Google Scholar

[6] H. Omidian, S.A. Hashemi, P.G. Sammes, I. Meldrum, A model for the swelling of superabsorbent polymers, Polymer 39 (1998), 6697-6704.

DOI: 10.1016/s0032-3861(98)00095-0

Google Scholar

[7] K. Kabiri, H. Omidian, S.A. Hashemi, et al., Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur. Polym. J. 39 (2003) 1341-1348.

DOI: 10.1016/s0014-3057(02)00391-9

Google Scholar

[8] M. Sun, J. Zhang, Y. Gao, X. Xie. The effect of crosslinkers on superabsorbents. Acta Polym. Sin. (2004) 595-599.

Google Scholar

[9] C. Chang, B. Duan, J. Cai, L. Zhang, Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery, Eur. Polym. J. 46 (2010) 92–100.

DOI: 10.1016/j.eurpolymj.2009.04.033

Google Scholar

[10] H.L. Liu, M.Z. Liu, L.J. Zhang, L.W. Ma, J. Chen, Y.J. Wang. Dual-stimuli sensitive composites based on multi-walled carbon nanotubes and poly(N, N-diethylacrylamide-co-acrylic acid) hydrogels. React. Funct. Polym. 70 (2010) 294–300.

DOI: 10.1016/j.reactfunctpolym.2010.02.002

Google Scholar

[11] L. Zhao, Y. Xiong, M.Z. Liu, X.H. Qi, Study on superabsorbent of maleic anhydride/acrylamide semi-interpenetrated with poly(vinyl alcohol), Polym. Adv. Technol. 21 (2010) 483–489.

DOI: 10.1002/pat.1456

Google Scholar

[12] Y.H. Zhang, L.M. Wang, X.H. Li, P.X. He, Salt-resistant superabsorbents from inverse-suspension polymerization of PEG methacrylate, acryamide and partially neutralized acrylic acid, J. Polym. Res. 18 (2011) 157–161.

DOI: 10.1007/s10965-010-9402-8

Google Scholar

[13] J.E. Elliott, M. Macdonald, J. Nie, C.N. Bowman, Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer, 45 (2004) 1503-1510.

DOI: 10.1016/j.polymer.2003.12.040

Google Scholar

[14] G.B. Marandi, N. Sharifnia, H. Hosseinzadeh, Synthesis of an alginate–poly(sodium acrylate- coacrylamide) superabsorbent hydrogel with Low salt sensitivity and high pH sensitivity, J. Appl. Polym. Sci. 101 (2006) 2927-2937.

DOI: 10.1002/app.23373

Google Scholar

[15] G.B. Marandi, S. Hariri, G.R. Mahdavinia, Effect of hydrophobic monomer on the synthesis and swelling behaviour of a collagen-graft-poly[(acrylic acid)-co-(sodium acrylate)] hydrogel, Polym. Int., 58 (2009) 227-235.

DOI: 10.1002/pi.2520

Google Scholar

[16] M.R. Moura, F.A. Aouada, S.L. Favaro, E. Radovanovic, A.F. Rubira, E.C. Muniz, Release of BSA from porous matrices constituted of alginate-Ca2+ and PNIPAAm-interpenetrated networks, Mater. Sci. Eng. C 29 (2009) 2319-2325.

DOI: 10.1016/j.msec.2009.05.022

Google Scholar

[17] A. Pourjavadi, M. Ayyari, M.S. Amini-Fazl, Taguchi optimized synthesis of collagen-g-poly (acrylic acid)/kaolin composite superabsorbent hydrogel, Eur. Polym. J. 44 (2008) 1209-1216.

DOI: 10.1016/j.eurpolymj.2008.01.032

Google Scholar