Low Temperature Preparation of Mullite Whisker via Non-Hydrolytic Sol-Gel Process Combined with Molten Salt Method

Article Preview

Abstract:

Mullite whisker was prepared at low temperature via non-hydrolytic sol-gel (NHSG) process combined with molten salt method. The influence of heat treatment temperature was studied on the morphology and the microstructure of whisker, and its growth mechanism was also described. The results show that the mullite whisker appears at the lowest temperature of 750 °C, and optimized mullite whisker can be prepared at 850 °C with the growth direction of [00, whose diameter is in the range of 170~300 nm with the aspect ratio of >30.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

975-980

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.S. Hong, X.X. Huang, J.K. Guo, Synthesis and sintered properties of mullite powder from seeded diphasic Al2O3-SiO2 gel, Mater. Lett. 24 (1995) 327-331.

DOI: 10.1016/0167-577x(95)00118-2

Google Scholar

[2] J. Ossaka, Tetragonal mullite-like phase from co-precipitated gels, Nature. 191 (1961) 1000-1001.

DOI: 10.1038/1911000a0

Google Scholar

[3] C. Aksel, The role of fine alumina and mullite particles on the thermomechanical behaviour of alumina–mullite refractory materials, Mater. Lett. 57 (2002) 708-714.

DOI: 10.1016/s0167-577x(02)00858-3

Google Scholar

[4] I.A. Aksay, J.A. Pask, The silica-alumina system: stable and metastable equilibria at 1. 0 atmosphere, Science. 183 (1974) 69-71.

DOI: 10.1126/science.183.4120.69

Google Scholar

[5] A.R. Guo, J.C. Liu, Y. Wang, H. Xu, Preparation of porous lamellar mullite ceramics with whisker skeletons by electrospinning and pressure molding, Mater. Lett. 74 (2012) 107-110.

DOI: 10.1016/j.matlet.2012.01.080

Google Scholar

[6] X. Miao, Porous mullite ceramics from natural topaz, Mater. Lett. 38 (1999) 167-172.

DOI: 10.1016/s0167-577x(98)00153-0

Google Scholar

[7] B.M. Kim, Y.K. Cho, S.Y. Yoon, R. Stevens, H.C. Park, Mullite whiskers derived from kaolin, Ceram. Int. 35 (2009) 579-583.

DOI: 10.1016/j.ceramint.2008.01.017

Google Scholar

[8] W.H. Jiang, Q. Wu, J.M. Liu, Q.X. Zhu, L.F. Miao, Low temperature synthesis of mullite whisker by nonhydrolytic sol-gel process combined with molten salt method, Adv. Mater. Res. 538-541 (2012) 2346-2349.

DOI: 10.4028/www.scientific.net/amr.538-541.2346

Google Scholar

[9] P. Peng, C. Sorrell, Preparation of mullite whiskers from topaz decomposition, Mater. Lett. 58 (2004) 1288-1291.

DOI: 10.1016/j.matlet.2003.09.046

Google Scholar

[10] L.B. Kong, H. Huang, T.S. Zhang, J. Ma, F. Boey, R.F. Zhang, Growth of mullite whiskers in mechanochemically activated oxides doped with WO3, J. Eur. Ceram. Soc. 23 (2003) 2257-2264.

DOI: 10.1016/s0955-2219(03)00083-9

Google Scholar

[11] K. Okada, N. Otsuka, Synthesis of mullite whiskers and their application in composites, J. Am. Ceram. Soc. 74 (1991) 2414-2418.

Google Scholar

[12] W. Wang, H.W. Li, K.R. Lai, K.H. Du, Preparation and characterization of mullite whiskers from silica fume by using a low temperature molten salt method, J. Alloys. Compd. 510 (2012) 92-96.

DOI: 10.1016/j.jallcom.2011.08.089

Google Scholar

[13] P.Y. Zhang, J.C. Liu, H.Y. Du, Z.Q. Li, S. Li, R. Xu, Molten salt synthesis of mullite whiskers from various alumina precursors, J. Alloys. Compd. 491 (2010) 447-451.

DOI: 10.1016/j.jallcom.2009.10.220

Google Scholar

[14] W.H. Jiang, Y.F. Peng, J.M. Liu, G. Feng, X.Y. Tan, Y. Yu, Preparation of mullite whisker via non-hydrolytic sol-gel route, J. Inorg. Mater. 25 (2010) 532-536.

DOI: 10.3724/sp.j.1077.2010.00532

Google Scholar

[15] L.L. Hench, J.K. West, The sol-gel process, Chem. Rev. 90 (1990) 33-72.

Google Scholar

[16] W.H. Jiang, H.Y. Wei, G. Feng, Y.H. Zhou, Y. Yu, Effect of oxygen donor alcohols on low temperature nonhydrolytic sol-gel synthesis of aluminum titanate, J. Chin. Ceram. Soc. 36 (2008) 11-16.

Google Scholar

[17] W.S. Brower, H.S. Park, R.S. Roth, J.L. Waring, Phase equilibrium and crystal growth in the system lithium oxide-molybdenum oxide, J. Cryst. Growth. 16 (1972) 15-20.

DOI: 10.1016/0022-0248(72)90101-7

Google Scholar

[18] S. Konduri, S. Mukherjee, S. Nair, Strain energy minimum and vibrational properties of single-walled aluminosilicate nanotube, Phys. Rev. B. 74 (2006) 0334011-0334014.

DOI: 10.1103/physrevb.74.033401

Google Scholar

[19] A. Hidalgo, S. Petit, C. Domingo, C. Alonso, C. Andrade, Microstructural characterization of leaching effects in cement pastes due to neutralisation of their alkaline nature: Part I: Portland cement pastes, Cement. Concrete. Res. 37 (2007) 63-70.

DOI: 10.1016/j.cemconres.2006.10.002

Google Scholar

[20] W.P. Hu, D.G. Truhlar, Factors affecting competitive ion-molecule reactions: ClO-+C2H5Cl and C2D5Cl via E2 and SN2 channelsm, J. Am. Chem. Soc. 118 (1996) 860-869.

DOI: 10.1021/ja952464g

Google Scholar