Electrocatalytic Hydrogenation of Oxalic Acid to Glyoxylic Acid on a Self-Organized TiO2 Nanotube Electrode

Article Preview

Abstract:

A study for electrocatalytic hydrogenation of oxalic acid has been reported using the self-organized TiO2 nanotube electrode prepared by anodic oxidation method. The prepared electrode was characterized by SEM and XPS. The electrocatalytic activity of the TiO2 nanotube electrode was evaluated by CV and galvanostatic electrolysis. The CV studies and electrochemical experiments showed that TiO2 nanotube electrode exhibited high electrocatalytic activity. In addition, the surface of TiO2 nanotube electrode developed into a periodic lattice of nanopores after electrolysis, which makes it find a potential application as electrocatalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

965-969

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Chamoulaud, D. Floner, C. Moinet, et al., Electrochim. Acta. 46 (2001) 2757-2760.

Google Scholar

[2] D. B. Chu, M. Xu, J. Lu, et al., Electrochem. Commun. 10 (2008) 350-353.

Google Scholar

[3] F. M. Zhao, F. Yan, Y. Qian, et al., Int. J. Electrochem. Sci. 7 (2012) 12931-12940.

Google Scholar

[4] D. B. Chu, X. H. Li, X. Y. Liu, et al., Chin. J. Chem. 22 (2004) 1231-1234.

Google Scholar

[5] F. M. Zhao, F. Yan, Y. Qian, et al., J. Electroanal. Chem. 698 (2013) 31-38.

Google Scholar

[6] M. Vilar, J. L. Oliveira, M. Navarro, Appl. Catal., A 372 (2010) 1-7.

Google Scholar

[7] M. L. Kantam, S. Laha, J. Yadav, et al., Tetrahedron Lett. 47 (2006) 6213-6216.

Google Scholar

[8] S. S. Vaghela, G. Ramachandraiah, P. K. Ghosh, et al., J. Appl. Electrochem. 32 (2002) 1189-1192.

Google Scholar

[9] J. R. Ochoa, A. Diego, J . Santa-Olalla, J. Appl. Electrochem. 23 (1993) 905-909.

Google Scholar

[10] K. Scott, A. P. Colbourne, S. D. Perry, Electrochim. Acta. 35 (1990) 621-623.

Google Scholar

[11] D. J. Pickett, K. S. Yap, J. Appl. Electrochem. 4 (1974) 17-23.

Google Scholar

[12] J. Li, X. Hu, Y. Su, et al., Chem. Eng. Sci. 62 (2007) 6784-6793.

Google Scholar

[13] Y. L. Zhou, X. S. Zhang, Y. C. Dai, et al., Chem. Eng. Sci. 58 (2003) 1021-1027.

Google Scholar

[14] J. S. Gu, D. B. Chu, X. F. Zhou, et al., Acta Chim. Sinica. 61 (2003) 1405-1409.

Google Scholar

[15] D. B. Chu, G. X. Qin, X. M. Yuan, et al., J. Porous Mat. 15 (2008) 661-665.

Google Scholar

[16] C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al., Nature. 359 (1992) 710-712.

Google Scholar

[17] L. C. Chen, T. C. Chou, Ind. Eng. Chem. Res. 33 (1994) 1436-1443.

Google Scholar

[18] Y. Gan, W. Zhang, H. Huang, et al., Chin. J. Chem. Eng. 14 (2006) 649-653.

Google Scholar

[19] A. Vittadini, A. Selloni, F. P. Rotzinger, et al., J. Phys. Chem. B 104 (2000) 1300-1306.

Google Scholar

[20] A. Vittadini, A. Selloni, F. P. Rotzinger, et al., Phys. Rev. Leet. 81 (1998) 2954-2957.

Google Scholar