Preparation of P(GMA-co-EGDMA) Monolithic Columns with Adjustable Porous Properties

Article Preview

Abstract:

Porous properties have notable effect on separating effect of organic polymer-based monolithic column. Different applications of monolithic columns require tailored pore size distributions. On account of that, P(GMA-co-EGDMA) monolithic columns were prepared with novel ternary porogenic agents. Glass tubes was chosen as polymerization mold. Moreover, factors influencing the inner pore morphology, pore size and specific surface area were investigated systematically. The results showed that the increasing of the solubility of porogenic agents and the amount of crosslinker, the decreasing of the amount of porogenic agents and temperature rising all could give rise to the decreasing of pore size. Remarkably, the effect of initiator was studied for the first time. The results showed that amount of initiator had no remarkable influence on porous properties. By controlling effect factors, P(GMA-co-EGDMA) Monolithic Columns with pore size from dozens to thousands of nanometer, which can be applied in separation of molecules with different size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

942-949

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Petro, F. Svec, J.M.J. Fréchet, Molded continuous poly(styrene-co- divinylbenzene) rod as a separation medium for the very fast separation of polymers comarison of the chromatographic properties of monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes, J. Chromatogr. A, 752(1996).

DOI: 10.1016/s0021-9673(96)00510-9

Google Scholar

[2] H. Oberarcher, A. Premstaller, C. G. Huber, Characterization of some physical and chromatographic properties of monolithic poly(styrene-co-divinylbenzene) columns, J. Chromatogr. A, 1030(2004) 201-208.

DOI: 10.1016/j.chroma.2004.01.009

Google Scholar

[3] H Chen, Rejtar T, V. Andreev, et al, High-speed, High-resolution monolithic capillary LC-MALDI MS using an off-line continuous deposition interface for proteomic analysis, Anal. hem., 7(2005) 2323-2331.

DOI: 10.1021/ac048322z

Google Scholar

[4] Ruben Dario Arrua, Miriam Cristina Strumia, Cecilia Inés Alvarez Igarzabal, Macroporous Monolithic Polymers: Preparation and Applications, Materials, 2(2009) 2429-2466.

DOI: 10.3390/ma2042429

Google Scholar

[5] M. AL-Bokary, D. Cherrak, G. Guiochon, Determination of the porosities of monolithic columns by inverse size-exclusion chromatography, J. Chromatogr. A, 975(2002) 275-284.

DOI: 10.1016/s0021-9673(02)01271-2

Google Scholar

[6] B. Bidlingmaier, K.K. Unger, N. Vondoehren, Comparative study on the column performance of microparticulate 5-μm C18-bonded and monolithic C18-bonded reverse-phase columns in high-performance liquid chromatography, J. Chromatogr. A, 832(1999).

DOI: 10.1016/s0021-9673(98)00961-3

Google Scholar

[7] F. Svec, J.M.J. Fréchet, Continuous Rods of Macroporous Polymer as High-Performance Liquid Chromatography Separation Media, Anal. Chem., 64(1992) 820-822.

DOI: 10.1021/ac00031a022

Google Scholar

[8] R.D. Arrua, M. Strumia, G. Pastrana, et al, Synthesis of macroporous polymer rods based on an acrylamide derivative monomer, J. Polym. Sci. A Polym. Chem., 44(2006) 6616-6623.

DOI: 10.1002/pola.21768

Google Scholar

[9] Xin Chen, H. Dennis Tolley, Milton L. Lee, Monolithic capillary columns synthesized from a single phosphate-containing dimethacrylate monomer for cation-exchange chromatography of peptides and proteins, J. Chromatogr. A, 1218(2011) 4322-4331.

DOI: 10.1016/j.chroma.2011.04.074

Google Scholar

[10] Lidija Urbas, Bostjan Kosir, Matjaz Peterka, et al, Reversed phase monolithic analytical columns for the determination of HA1 subunit of influenza virus haemagglutinin, J. Chromatogr. A, 1218 (2011) 2432-2437.

DOI: 10.1016/j.chroma.2010.12.082

Google Scholar

[11] Alen Albreht, Irena Vovk, Applicability of analytical and preparative monolithic columns to the separation and isolation of major whey proteins, J. Chromatogr. A, 1227(2012) 210-218.

DOI: 10.1016/j.chroma.2012.01.011

Google Scholar

[12] Dubravko Forcic, Marija Brgles, Jelena Ivancic-Jelecki, et al, Concentration and purification of rubella virus using monolithic chromatographic support, J. Chromatogr. B, 879(2011) 981-986.

DOI: 10.1016/j.jchromb.2011.03.012

Google Scholar

[13] Marija Brgles, James Clifton, Robert Walsh, Selectivity of monolithic supports under overloading conditions and their use for separation of human plasma and isolation of low abundance proteins, J. Chromatogr. A, 1218 (2011) 2389- 2395.

DOI: 10.1016/j.chroma.2010.11.059

Google Scholar

[14] F. Svec, J.M.J. Frechet, Modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) continuous rod columns for preparative-scale ion-exchange chromatography of proteins, J. Chromatogr. A, 702(1995) 89-95.

DOI: 10.1016/0021-9673(94)01021-6

Google Scholar

[15] C. Virklund, F. Svec, J.M.J. Frechet, Fast ion-exchage HPLC of proteins using porous poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic grafted with poly(2-acrylamido-2-methy-1-propanesulfonic acid), Biotech Prog, 13(1997) 597-603.

DOI: 10.1021/bp9700667

Google Scholar

[16] Mutsumi Takahashi, Tomohiko Hirano, Shinya Kitagawa, et al, Separation of small inorganic anions using methacrylate-based anion-exchange monolithic column prepared by low temperature UV photo-polymerization, J. Chromatogr. A , 1232(2012) 123-127.

DOI: 10.1016/j.chroma.2011.10.070

Google Scholar

[17] Zeid A. Al-Othman, Ahmad Aqel, Muteb K.E. Alharbi, et al, Fast chromatographic determination of caffeine in food using a capillary hexyl methacrylate monolithic column, Food Chemistry, 132(2012) 2217-2223.

DOI: 10.1016/j.foodchem.2011.12.071

Google Scholar

[18] He Zhang, Yunyun Jiang, Jun Wen, et al, Rapid determination of telmisartan in human plasma by HPLC using a monolithic column with fluorescence detection and its application to a bioequivalence study, J. Chromatogr. B, 877(2009) 3729-3733.

DOI: 10.1016/j.jchromb.2009.08.028

Google Scholar

[19] Qi Liang Deng, Yan Li Li, Li Hua Zhang, Molecularly imprinted macroporous monolithic materials for protein recognition, Chinese Chemical Letters, 22(2011) 1351-1354.

DOI: 10.1016/j.cclet.2011.05.044

Google Scholar

[20] B. Schlemmer, R. Bandari, L. Rosenkranz, et al, Electron beam triggered, free radical polymerization-derivedmonolithic capillary columns for high -performanceliquid chromatography, J. Chromatogr. A, 1216(2009) 2664- 2670.

DOI: 10.1016/j.chroma.2008.09.003

Google Scholar