A Facile and Efficient Method to Prepare Exfoliated and Reduced Graphene Nanosheets by Detonation

Article Preview

Abstract:

A facile, efficient, and low energy consumption detonation method to prepare few-layered graphene nanosheets has been developed using graphite oxide as a precursor at detonation induced temperature as low as 100 °C . The composition and structure of as-produced few-layered graphenes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), Specific Surface (BET), Transmission Electron Microscopy (TEM), Raman Microscope, and Atomic Force Microscope (AFM). Results showed that the as-produced graphenes were transparent and few-layered with a high specific surface area (225.9 m2/g). The investigation opens a new road to prepare few-layered graphene nanosheets at low exfoliation temperature in a low-cost and facile way.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

260-266

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Park, R.S. Ruoff, Nat. Nanotechnol. 4 (2009) 217-224.

Google Scholar

[2] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoffm, Carbon. 44 (2006) 3342-3347.

Google Scholar

[3] Z.J. Fan, W. Kai, J. Yan, T. Wei, etal., ACS. Nano. 5 (2011) 191-198.

Google Scholar

[4] D.A. Dikin, S. Stankovich, E.J. Zimney, etal., Nature. 448 (2007) 457-460.

Google Scholar

[5] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, etal, Nature. 442 (2006) 282-286.

DOI: 10.1038/nature04969

Google Scholar

[6] Y.W. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon. 48 (2010) 2106-2122.

DOI: 10.1016/j.carbon.2010.02.001

Google Scholar

[7] M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, I.A. Aksay, Chem. Mater. 19 (2007) 4396-4404.

DOI: 10.1021/cm0630800

Google Scholar

[8] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Adv. Mater. 20 (2008) 4490-4493.

Google Scholar

[9] C. Wang, L. Zhan, W.M. Qiao, L.C. Ling, New. Carbon. Mat er. 26 (2011) 21-25.

Google Scholar

[10] W. Lv, D.M. Tang, Y.B. He, C.H. You, Z.Q. Shi, X.C. Chen, C.M. Chen, P.X. Hou, C. Liu, Q.H. Yang, ACS. Nano. 3 (2009) 3730-3736.

Google Scholar

[11] H.B. Zhang, J.W. Wang, Q. Yan, W.G. Zheng, C. Chen, Z.Z. Yu, J. Mater. Chem. 21 (2011) 5392-5397.

Google Scholar

[12] S. Stankovich, D. Dikin, G. Dommett, K. Kohlhaas, E. Zimney,E. Stach, R. Piner, S. Nguyen, R. Ruoff, Nature, 2006, 442, 282.

DOI: 10.1038/nature04969

Google Scholar

[13] T.N. Zhou, F. Chen, K. Liu, H. Deng, Q. Zhang, J.W. Feng, Q. Fu, Nanotechnology. 22 (2011) 045704.

Google Scholar

[14] C. Nethravathi, M. Rajamathi, Carbon. 46 (2008) 1994-(1998).

Google Scholar

[15] H.M. A Hassan, V. Abdelsayed, A.E.R.S. Khder, etal, J. Mater. Chem. 19 (2009) 3832-3837.

Google Scholar

[16] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon. 45 (2007) 1558-1565.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[17] B. Tryba, A.W. Morawski, M. Inagaki, Carbon. 43 (2005) 2397-2429.

Google Scholar

[18] E.H.L. Falcao, R.G. Blair, J.J. Mack, L.M. Viculis, C.W. Kwon, M. Bendikov, R.B. Kaner, B.S. Dunn, F. Wudl, Carbon. 45 (2007) 1364-1369.

DOI: 10.1016/j.carbon.2007.01.018

Google Scholar