Preparation of Carbaryl-Imprinted Capillary Monolithic Column for Screening of Carbaryl from Three Carbamates Mixture

Article Preview

Abstract:

A carbaryl molecularly imprinted capillary monolith was prepared by organic-inorganic hybrid approach. Methacrylic acid (MAA) as functional monomer, γ-methacryloxypropytrimethoxysilane (γ-MAPS) as crosslinker, carbaryl as template molecule, and acetonitrile/dichloromethane mixture (v/v, 1:4) were used as porogen. The molar ratio of 1:6:8 (carbaryl:MAA: γ-MAPS, for which the retention factor k was 7.57, was expected to be highest for carbaryl on the optimum capillary monolith. The condition of 20 mmol/L phosphate buffer with pH value 3.5 containing 30% acetonitrile favored the carbaryl separation from three carbamates (carbaryl, fenobucarb and metocarb) through the effective imprinted length of the column which was 15 cm. As far as the screening of carbaryl from a group of structural analogs, the MIP monolith combined with capillary electrochromatography was preferred.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

248-255

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Spégel, L. Schweitz, S. Nilsson, Molecularly imprinted microparticles for capillary electrochromatography: Studies on microparticle synthesis and electrolyte composition, Electrophoresis. 22(2001) 3833-3841.

DOI: 10.1002/1522-2683(200109)22:17<3833::aid-elps3833>3.0.co;2-9

Google Scholar

[2] F. Priego-Capote, L. Ye, S. Shakil, S A. Shamsi, S. Nilsson, Monoclonal Behavior of Molecularly Imprinted Polymer Nanoparticles in Capillary Electrochromatography, Anal. Chem. 80(2008) 2881-2887.

DOI: 10.1021/ac070038v

Google Scholar

[3] P. Spégel, L. Schweitz, S. Nilsson, Selectivity toward Multiple Predetermined Targets in Nanoparticle Capillary Electrochromatography, Anal. Chem. 75(2003) 6608-6613.

DOI: 10.1021/ac034732w

Google Scholar

[4] Y C. Huang, C C. Lin, C Y. Liu, Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography, Electrophoresis. 25(2004)554- 561.

DOI: 10.1002/elps.200305735

Google Scholar

[5] S A. Zaidi, W J. Cheong, Preparation of an open-tubular capillary column with a monolithic layer of S-ketoprofen imprinted and 4-styrenesulfonic acid incorporated polymer and its enhanced chiral separation performance in capillary electrochromatography, J. Chromatogr. A. 1216 (2009).

DOI: 10.1016/j.chroma.2008.08.015

Google Scholar

[6] C. Cacho, L. Schweitz, E. Turiel, C. Perez-Conde, Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples, J. Chromatogr. A. 1179(2008) 216-223.

DOI: 10.1016/j.chroma.2007.11.097

Google Scholar

[7] Z S. Liu, C. Zheng, C. Yan, R Y. Gao, Molecularly imprinted polymers as a tool for separation in CEC, Electrophoresis. 28(2007)127-136.

DOI: 10.1002/elps.200600544

Google Scholar

[8] H F. Wang, Y Z. Zhu, X P. Yan, R Y. Gao, J Y. Zheng, A Room Temperature Ionic Liquid (RTIL)-Mediated, Non-Hydrolytic Sol–Gel Methodology to Prepare Molecularly Imprinted, Silica-Based Hybrid Monoliths for Chiral Separation, Adv. Mater. 18(2006).

DOI: 10.1002/adma.200601024

Google Scholar

[9] H F. Wang, Y Z. Zhu, X P. Yan, J P. Lin, Fabrication of molecularly imprinted hybrid monoliths via a room emperature ionic liquid一mediated nonhydrolytic sol-gel route for chiral separation of zolmitriptan by capillary electrochromatography, Electrophoresis. 29(2008).

DOI: 10.1002/elps.200700402

Google Scholar

[10] J X. He, G Z. Fang, Q L. Deng, S. Wang, Preparation, characterization and application of organic一inorganic hybrid ractopamine multi一template molecularly imprinted capillary monolithic column, Anal. Chim. Acta. 692(2011) 57-62.

DOI: 10.1016/j.aca.2011.02.056

Google Scholar

[11] J X. He, G Z. Fang , Y C. Yao, S. Wang, Preparation and characterization of molecularly imprinted silica monolith for screening sulfamethazine, J. Sep. Sci. 33(2010) 3263-3271.

DOI: 10.1002/jssc.200900650

Google Scholar

[12] J. Zhang, H K. Lee, Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography–mass spectrometry to the determination of carbamate pesticides, J. Chromatogr. A. 1117(2006)31-37.

DOI: 10.1016/j.chroma.2006.03.102

Google Scholar

[13] B. Mickova, T. Kovalczuk, P. Rauch, M J. Moreno, A. Abad, A. Montoya, E. Ferri, F. Fini, S. Girotti, Analytical performances of validated chemiluminescent enzyme immunoassays to detect N-methylcarbamate pesticides, Anal. Chim. Acta. 528(2005).

DOI: 10.1016/j.aca.2004.09.066

Google Scholar

[14] E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barceló, L M. Lechuga, Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor, Biosen. Bioelectron. 21(2006)2129-2136.

DOI: 10.1016/j.bios.2005.10.013

Google Scholar

[15] C. Zhang, GP. Ma, GZ. Fang, Y. Zhang, S. Wang, Development of a Capillary Electrophoresis-Based Immunoassay with Laser-Induced Fluorescence for the Detection of Carbaryl in Rice Samples, J. Agric. Food Chem. 56(2008) 8832-8837.

DOI: 10.1021/jf801645m

Google Scholar