[1]
X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods, Nature 458 (2009) 746–749.
DOI: 10.1038/nature07877
Google Scholar
[2]
X. Y. Yao, X. Xin, Y. M. Zhang, J. Wang, Z. P. Liu, X. X. Xu, Co3O4 nanowires as high capacity anode materials for lithium-ion batteries, J. Alloys. Compd. 521 (2012) 95–100.
DOI: 10.1016/j.jallcom.2012.01.047
Google Scholar
[3]
G. Wang, H. Liu, J. Horvat, B. Wang, S. Qiao, J. Park, H. Ahn, Highly Ordered Mesoporous Cobalt Oxide Nanostructures: Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices, Chem. Eur. J. 16 (2010).
DOI: 10.1002/chem.201000562
Google Scholar
[4]
W. Y. Li, L. N. Xu, J. Chen, Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater. 15 (2005) 851–857.
DOI: 10.1002/adfm.200400429
Google Scholar
[5]
T. Maruyama, S. Arai, Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition, J. Electrochem. Soc. 143 (1996) 1383-1386.
DOI: 10.1149/1.1836646
Google Scholar
[6]
Q. Yuanchun, Z. Yanbao, W. Zhishen, Preparation of cobalt oxide nanoparticles and cobalt powders by solvothermal process and their characterization, Mater. Chem. Phys. 110 (2008) 457–462.
DOI: 10.1016/j.matchemphys.2008.03.001
Google Scholar
[7]
J. W. Yoon, J. K. Choi, J. H. Lee, Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers, Sens. Actuators B 161 (2012) 570–577.
DOI: 10.1016/j.snb.2011.11.002
Google Scholar
[8]
F. Mohandes, F. Davar, M. Salavati-Niasari, Preparation of Co3O4 nanoparticles by nonhydrolytic thermolysis of [Co(Pht)(H2O)]n polymersJ. Magn. Magn. Mater. 322 (2010) 872-877.
DOI: 10.1016/j.jmmm.2009.11.019
Google Scholar
[9]
H. J. Yan, X. H. Xie, K. W. Liu, H. M. Cao, X. J. Zhang, Y. L. Luo, Facile preparation of Co3O4 nanoparticles via thermal decomposition of Co(NO3)2 loading on C3N4, Powder Technol. 221 (2012) 199–202.
DOI: 10.1016/j.powtec.2012.01.002
Google Scholar
[10]
J. Ma, S. Zhang, W. Liu, Y. Zhao, Facile preparation of Co3O4 nanocrystals via a solvothermal process directly from common Co2O3 powder, J. Alloys Compd. 490 (2010) 647-651.
DOI: 10.1016/j.jallcom.2009.10.126
Google Scholar
[11]
G. M. Bai, H. X. Dai, J. G. Deng, Y. X. Liu, F. Wang, Z. X. Zhao, W. G. Qiu, C. T. Au, Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene, Appl. Catal. A 450 (2013) 42– 49.
DOI: 10.1016/j.apcata.2012.09.054
Google Scholar
[12]
N. R. E. Radwan, M. S. El-Shall, H. M. A. Hassan, Synthesis and characterization of nanoparticle Co3O4, CuO and NiO catalysts prepared by physical and chemical methods to minimize air pollution, Appl. Catal. A 331 (2007) 8.
DOI: 10.1016/j.apcata.2007.07.005
Google Scholar
[13]
F. Teng, M. D. Chen, G. Q. Li, Y. Teng, T. G. Xu, Y. C. Hang, W. Q. Yao, S. Santhanagopalan, D. D. Meng, Y. F. Zhu, High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods, Appl. Catal. B 110 (2011).
DOI: 10.1016/j.apcatb.2011.08.035
Google Scholar
[14]
J. Xu, L. Gao, J. Y. Cao, W. C. Wang, Z. D. Chen, Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material, Electrochim. Acta 56 (2010) 732-736.
DOI: 10.1016/j.electacta.2010.09.092
Google Scholar
[15]
N. Jayaprakash, W. D. Jones, S. S. Moganty, L. A. Archer, Composite lithium battery anodes based on carbon@Co3O4 nanostructures: Synthesis and characterization, J. Power Sources 200 (2012) 53–58.
DOI: 10.1016/j.jpowsour.2011.10.018
Google Scholar
[16]
S. S. Lu, X. Y. Jing, J. Y. Liu, J. Wang, Q. Liu, Y. H. Zhao, S. Jamil, M. L. Zhang, L. H. Liu, Synthesis of porous sheet-like Co3O4 microstructure by precipitation method and its potential applications in the thermal decomposition of ammonium perchlorate, J. Solid State Chem. 197 (2013).
DOI: 10.1016/j.jssc.2012.09.020
Google Scholar
[17]
D. Patil, P. Patil, V. Subramanian, P. A. Joy, H. S. Potdar, Highly sensitive and fast responding CO sensor based on Co3O4 nanorods, Talanta 81 (2010) 37–43.
DOI: 10.1016/j.talanta.2009.11.034
Google Scholar
[18]
J. Park, X. P. Shen, G. X. Wang, Solvothermal synth esis and gas-sensing performance of Co3O4 hollow nanospheres, Sens. Actuators B 136 (2009) 494–498.
DOI: 10.1016/j.snb.2008.11.041
Google Scholar
[19]
M. Oku, Y. Sato, In-situ X-ray photoelectron spectroscopic study of the reversible phase transition between CoO and Co3O4 in oxygen of 10−3 Pa, Appl. Surf. Sci. 55 (1992) 37–41.
DOI: 10.1016/0169-4332(92)90378-b
Google Scholar
[20]
X. Yao, X. Xin, Y. Zhang, J. Wang, Z. Liu, X. Xu, Co3O4 nanowires as high capacity anode materials for lithium ion batteries, J. Alloys Compd. 521 (2012) 95–100.
DOI: 10.1016/j.jallcom.2012.01.047
Google Scholar
[21]
T. He, D. R. Chen, X. L. Jiao, Y. L. Wang, Y. Z. Duan, Solubility-controlled synthesis of high-quality Co3O4 nanocrystals, Chem. Mater. 17 (2005) 4023–4030.
DOI: 10.1021/cm050727s
Google Scholar
[22]
K. G. Chandrappa, T. V. Venkatesha, Generation of Co3O4 microparticles by solution combustion method and its Zn–Co3O4 composite thin films for corrosion protection, J. Alloys Compd. 542 (2012) 68–77.
DOI: 10.1016/j.jallcom.2012.07.067
Google Scholar
[23]
Z. Dong, Y. Fu, Q. Han, Y. Xu, H. Zhang, Synthesis and Physical Properties of Co3O4 Nanowires, J. Phys. Chem. C 111 (2007) 18475–18478.
DOI: 10.1021/jp075365l
Google Scholar
[24]
U. S. Choi, G. Sakai, K. Shimanoe, N. Yamazoe, Sensing properties of SnO2–Co3O4 composites to CO and H2, Sens. Actuator B 98 (2004) 166–173.
Google Scholar
[25]
R. J. Wu, C. H. Hu, C. T. Yeh, P. G. Su, Nanogold on powdered cobalt oxide for carbon monoxide sensor, Sens. Actuator B 96 (2003) 596–601.
DOI: 10.1016/s0925-4005(03)00646-4
Google Scholar