Synthesis of Co3O4 Multilayer Nanosheet Material and its Promising Gas Sensing Property

Article Preview

Abstract:

Co3O4 multilayer nanosheets were synthesized by a hydrothermal method and a post annealing treatment process. The effect of solution concentration and ratio on the morphology of Co3O4 precursor was studied. The crystalline structure, morphology and elemental composition of Co3O4 multilayer nanosheets were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy technologies. When exposed to reducing gas such as ethanol, resistance of Co3O4 multilayer nanosheet sensor increases quickly, demonstrating that the Co3O4 multilayer nanosheets are p-type conductivity. For 100 ppm alcohol at 240 °C, the sensor response is as high as 32, indicating that the powder of Co3O4 multilayer nanosheets is a very promising low-powder gas sensing material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-236

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods, Nature 458 (2009) 746–749.

DOI: 10.1038/nature07877

Google Scholar

[2] X. Y. Yao, X. Xin, Y. M. Zhang, J. Wang, Z. P. Liu, X. X. Xu, Co3O4 nanowires as high capacity anode materials for lithium-ion batteries, J. Alloys. Compd. 521 (2012) 95–100.

DOI: 10.1016/j.jallcom.2012.01.047

Google Scholar

[3] G. Wang, H. Liu, J. Horvat, B. Wang, S. Qiao, J. Park, H. Ahn, Highly Ordered Mesoporous Cobalt Oxide Nanostructures: Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices, Chem. Eur. J. 16 (2010).

DOI: 10.1002/chem.201000562

Google Scholar

[4] W. Y. Li, L. N. Xu, J. Chen, Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater. 15 (2005) 851–857.

DOI: 10.1002/adfm.200400429

Google Scholar

[5] T. Maruyama, S. Arai, Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition, J. Electrochem. Soc. 143 (1996) 1383-1386.

DOI: 10.1149/1.1836646

Google Scholar

[6] Q. Yuanchun, Z. Yanbao, W. Zhishen, Preparation of cobalt oxide nanoparticles and cobalt powders by solvothermal process and their characterization, Mater. Chem. Phys. 110 (2008) 457–462.

DOI: 10.1016/j.matchemphys.2008.03.001

Google Scholar

[7] J. W. Yoon, J. K. Choi, J. H. Lee, Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers, Sens. Actuators B 161 (2012) 570–577.

DOI: 10.1016/j.snb.2011.11.002

Google Scholar

[8] F. Mohandes, F. Davar, M. Salavati-Niasari, Preparation of Co3O4 nanoparticles by nonhydrolytic thermolysis of [Co(Pht)(H2O)]n polymersJ. Magn. Magn. Mater. 322 (2010) 872-877.

DOI: 10.1016/j.jmmm.2009.11.019

Google Scholar

[9] H. J. Yan, X. H. Xie, K. W. Liu, H. M. Cao, X. J. Zhang, Y. L. Luo, Facile preparation of Co3O4 nanoparticles via thermal decomposition of Co(NO3)2 loading on C3N4, Powder Technol. 221 (2012) 199–202.

DOI: 10.1016/j.powtec.2012.01.002

Google Scholar

[10] J. Ma, S. Zhang, W. Liu, Y. Zhao, Facile preparation of Co3O4 nanocrystals via a solvothermal process directly from common Co2O3 powder, J. Alloys Compd. 490 (2010) 647-651.

DOI: 10.1016/j.jallcom.2009.10.126

Google Scholar

[11] G. M. Bai, H. X. Dai, J. G. Deng, Y. X. Liu, F. Wang, Z. X. Zhao, W. G. Qiu, C. T. Au, Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene, Appl. Catal. A 450 (2013) 42– 49.

DOI: 10.1016/j.apcata.2012.09.054

Google Scholar

[12] N. R. E. Radwan, M. S. El-Shall, H. M. A. Hassan, Synthesis and characterization of nanoparticle Co3O4, CuO and NiO catalysts prepared by physical and chemical methods to minimize air pollution, Appl. Catal. A 331 (2007) 8.

DOI: 10.1016/j.apcata.2007.07.005

Google Scholar

[13] F. Teng, M. D. Chen, G. Q. Li, Y. Teng, T. G. Xu, Y. C. Hang, W. Q. Yao, S. Santhanagopalan, D. D. Meng, Y. F. Zhu, High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods, Appl. Catal. B 110 (2011).

DOI: 10.1016/j.apcatb.2011.08.035

Google Scholar

[14] J. Xu, L. Gao, J. Y. Cao, W. C. Wang, Z. D. Chen, Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material, Electrochim. Acta 56 (2010) 732-736.

DOI: 10.1016/j.electacta.2010.09.092

Google Scholar

[15] N. Jayaprakash, W. D. Jones, S. S. Moganty, L. A. Archer, Composite lithium battery anodes based on carbon@Co3O4 nanostructures: Synthesis and characterization, J. Power Sources 200 (2012) 53–58.

DOI: 10.1016/j.jpowsour.2011.10.018

Google Scholar

[16] S. S. Lu, X. Y. Jing, J. Y. Liu, J. Wang, Q. Liu, Y. H. Zhao, S. Jamil, M. L. Zhang, L. H. Liu, Synthesis of porous sheet-like Co3O4 microstructure by precipitation method and its potential applications in the thermal decomposition of ammonium perchlorate, J. Solid State Chem. 197 (2013).

DOI: 10.1016/j.jssc.2012.09.020

Google Scholar

[17] D. Patil, P. Patil, V. Subramanian, P. A. Joy, H. S. Potdar, Highly sensitive and fast responding CO sensor based on Co3O4 nanorods, Talanta 81 (2010) 37–43.

DOI: 10.1016/j.talanta.2009.11.034

Google Scholar

[18] J. Park, X. P. Shen, G. X. Wang, Solvothermal synth esis and gas-sensing performance of Co3O4 hollow nanospheres, Sens. Actuators B 136 (2009) 494–498.

DOI: 10.1016/j.snb.2008.11.041

Google Scholar

[19] M. Oku, Y. Sato, In-situ X-ray photoelectron spectroscopic study of the reversible phase transition between CoO and Co3O4 in oxygen of 10−3 Pa, Appl. Surf. Sci. 55 (1992) 37–41.

DOI: 10.1016/0169-4332(92)90378-b

Google Scholar

[20] X. Yao, X. Xin, Y. Zhang, J. Wang, Z. Liu, X. Xu, Co3O4 nanowires as high capacity anode materials for lithium ion batteries, J. Alloys Compd. 521 (2012) 95–100.

DOI: 10.1016/j.jallcom.2012.01.047

Google Scholar

[21] T. He, D. R. Chen, X. L. Jiao, Y. L. Wang, Y. Z. Duan, Solubility-controlled synthesis of high-quality Co3O4 nanocrystals, Chem. Mater. 17 (2005) 4023–4030.

DOI: 10.1021/cm050727s

Google Scholar

[22] K. G. Chandrappa, T. V. Venkatesha, Generation of Co3O4 microparticles by solution combustion method and its Zn–Co3O4 composite thin films for corrosion protection, J. Alloys Compd. 542 (2012) 68–77.

DOI: 10.1016/j.jallcom.2012.07.067

Google Scholar

[23] Z. Dong, Y. Fu, Q. Han, Y. Xu, H. Zhang, Synthesis and Physical Properties of Co3O4 Nanowires, J. Phys. Chem. C 111 (2007) 18475–18478.

DOI: 10.1021/jp075365l

Google Scholar

[24] U. S. Choi, G. Sakai, K. Shimanoe, N. Yamazoe, Sensing properties of SnO2–Co3O4 composites to CO and H2, Sens. Actuator B 98 (2004) 166–173.

Google Scholar

[25] R. J. Wu, C. H. Hu, C. T. Yeh, P. G. Su, Nanogold on powdered cobalt oxide for carbon monoxide sensor, Sens. Actuator B 96 (2003) 596–601.

DOI: 10.1016/s0925-4005(03)00646-4

Google Scholar