Electron Transport in Zigzag Graphene Nanoribbons with a Tetra-Vacancy Complex: A Perfect Spin Filter

Article Preview

Abstract:

A novel doping scheme for graphene was recently realized experimentally by creating different vacancy complexes doped with a transition metal (TM) atom [nanoLett. 12, 141 (2012)]. This provides a new reliable way to modifying the electronic structure and transport property of graphene. Here, we show, by performing first-principles calculations, that the defect complex of TM@V4 (a TM atom doped tetra-vacancy) in zigzag graphene nanoribbons (ZGNRs) can lead to a 100% spin-polarized electron transport in a wide energy range around the Fermi energy. Analyses show that this is due to the particular atomic structure of the TM@V4 complex regardless of the species of the TM atom.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-213

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. C. Meyer, A. K. Geim, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446(2007) 60-63.

Google Scholar

[2] S. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. J. L. A. Ponomarenko, and A. K. Geim, Phys. Rev. Lett. 97(2006) 016801.

DOI: 10.1103/physrevlett.97.016801

Google Scholar

[3] H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, Rep. Prog. Phys 75, 062501 (2012).

DOI: 10.1088/0034-4885/75/6/062501

Google Scholar

[4] K. S. Novoselov, Rev. Mod. Phys 83 (2011) 837-849.

Google Scholar

[5] Y. Kobayashi, K. -I. Fukui, T. Enoki, K. Kusakabe, andY. Kaburagi, Phys. Rev. B 71(2005) 193406.

Google Scholar

[6] Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, Phys. Rev. B 73 (2007) 085421.

Google Scholar

[7] J. Haskins, A. Knac, C. Sevik, H. Sevincli, G. Cuniberti, and T. Cagin, ACS Nano 5(2011) 3779-3787.

Google Scholar

[8] T. C. Li and S. -P. Lu, Phys. Rev. B 77 (2008) 085408.

Google Scholar

[9] N. Gorjizadeh, A. A. Farajian, and Y. Kawazoe, Nanotechnology 20 (2009) 015201.

Google Scholar

[10] I. Deretzis, G. Fiori, G. Iannaccone, and A. L. Magna, Phys. Rev. B 81(2010) 085427.

Google Scholar

[11] A. R. Botello-Mendez, X. Declerck, M. Terrones, H. Terronesa, and J. -C. Charlier, Nanoscale 3 (2011) 2868-2872.

Google Scholar

[12] J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett. 8 (2008), 3582-3586.

DOI: 10.1021/nl801386m

Google Scholar

[13] Y. Ren and K. Q. Chen, J. Appl. Phys. 107 (2009) 044514.

Google Scholar

[14] Y. Gan, L. Sun, and F. Banhart, Small 4(2008) 587-591.

Google Scholar

[15] M. F. Chisholm, G. Duscher, andW. Windl, Nano Lett. 12 (2012) 4651-4655.

Google Scholar

[16] S. Lisenkov, A. N. Andriotis., and M. Menon, Phys. Rev. Lett. 108(2012) 187208.

Google Scholar

[17] A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkӧ, and R. M. Nieminen, Phys. Rev. Lett. 102 (2009) 126807.

Google Scholar

[18] E. J. G. Sántos, A. Ayuela, and D. Sánchez-Portal, New J. Phys 12 (2010) 053012.

Google Scholar

[19] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101 (2008) 026803.

DOI: 10.1103/physrevlett.101.026803

Google Scholar

[20] K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys. Rev. B 77 (2008) 235430.

Google Scholar

[21] V. V. Nelayev and A. I. Mironchik, Mater. Phys. Mech. 9 (2010) 26-34.

Google Scholar

[22] D. W. Boukhvalov and M. I. Katsnelson, Appl. Phys. Lett. 95 (2009) 023109.

Google Scholar

[23] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5(2011) 26-41.

Google Scholar

[24] H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlӧgl, W. Yang, et al., Nano Lett. 12 (2012) 141-144.

Google Scholar

[25] S. -H. Ke, H. Baranger, andW. T. Yang, Phys. Rev. B70 (2004) 085401.

Google Scholar

[26] D. Sánchez-Portal, P. Ordejon, E. Artacho, and J. M. Soler, Int. J. Quantum Chem. 65(1997) 453-461.

Google Scholar

[27] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejόn, and D. Sόnchez-Portal, J. Phys.: Condens. Matter 14 (2002) 2745.

Google Scholar

[28] N. Troullier and J. L. Martins, Phys. Rev. B 43 (1991) (1993).

Google Scholar

[29] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[30] S.M. -M. Dubois, Z. Zanolli, X. Declerck, and J-C. Charlier, Eur. Phys. J. B 72 (2009) 1.

Google Scholar

[31] Y. Son, M. Cohen, and S. Louie, Nature 444 (2006) 347-349.

Google Scholar