Preparation, Characterization and Conductivity of Solid High-Proton Conductor Na7[CoW11O39Cd(H2O)]·12H2O

Article Preview

Abstract:

A new solid high-proton conductor Na7[CoW11O39Cd (H2O)]·12H2O has been synthesized for the first time. The percentage composition of the product were determined by Inductively coupled plasma (ICP) and X-ray photoelectron spectroscopy (XPS). The product was characterized by infrared spectroscopy (IR) and X-ray diffraction (XRD), which indicate it possesses the Keggin structure. The TG-DTA curve shows the sequence of water loss in the compound, the amount of the loss, as well as the thermostability. Conductivity of the compound was investigated by four-electrode method at room temperature and different measuring temperatures, the results reveal that its proton conductivity is 4.87×10−4 S·cm-1 at 27oC and the activation energy for proton conduction is 15.31 kJ/mol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-228

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Kortz, M.G. Savelieff, F.Y.A. Ghali, L.M. Khalil, S.A. Maalouf, D.I. Sinno, Angew. Chem. Int. Ed. 41 (2002) 4070–4073.

DOI: 10.1002/1521-3773(20021104)41:21<4070::aid-anie4070>3.0.co;2-3

Google Scholar

[2] L.C.W. Baker, D.C. Glick, Chem. Rev. 98 (1998) 3–49.

Google Scholar

[3] P. Gouzerh, A. Proust, Chem. Rev. 98 (1998) 77–111.

Google Scholar

[4] P.J. Hagrman, R.C. Finn, J. Zubieta, Solid State Sci. 3 (2001) 745–774.

Google Scholar

[5] E.B. Wang, C.W. Hu, Introduction of Polyacid Chemistry, Chemical Industry Press, Beijing, 1998, p.215–226.

Google Scholar

[6] G. Alberti, M. Casciola, Solid State Ionics. 145(2001)249–255.

Google Scholar

[7] Q.Y. Wu, X.G. Sang, F. Shao, W.Q. Pang, Mater. Chem. Phys. 92(2005)16–20.

Google Scholar

[8] Q.Y. Wu, E.B. Wang, J.F. Liu, Polyhedron. 12 (1993) 2563–2568.

Google Scholar

[9] P.A. Jalil, N. Tabet, M. Faiz, N.M. Hamdan, Z. Hussain, Appl. Catal. A: Gen. 257 (2004) 1– 6.

Google Scholar

[10] B.B. Zhou, Y.D. Wei, Z.H. Li, Y.R. Guo, J. Chin. Rare Earth Soc. 20 (2002) 83– 87.

Google Scholar

[11] V.P. Tolstoy, L.B. Gulina, G.S. Korotchenkov, V.I. Brynsari, Appl. Surf. Sci. 221 (2004) 197–202.

Google Scholar

[12] Q.Y. Wu, G.Y. Meng, Mater. Res. Bull. 35 (2000) 85–91.

Google Scholar

[13] Z.H. Li, Y.D. Wei, B.B. Zhou, J. Meng, Y.R. Guo, Z. Lv, J. Chin. Inorg. Chem. 19 (2003) 1053–1058.

Google Scholar

[14] Y.P. Wang, B.B. Zhou Y.L. Liu, J. Alloys Compd. 463 (2008) 333–337.

Google Scholar

[15] Q.Y. Wu, X.G. Sang, Y.C. He, X. Li, Mater. Lett. 57 (2003) 4028–4032.

Google Scholar

[16] Z.P. Wang, J.Y. Nu, L. Xu, Acta Chim. Sin. 53 (1995) 757–764.

Google Scholar

[17] A.V. Ivanov, T.V. Vasina V.D. Nissenbaum, L.M. Kustov, M.N. Timofeeva, J.I. Houzvicka, Appl. Catal. A: Gen. 259 (2004) 65–72.

DOI: 10.1016/j.apcata.2003.09.011

Google Scholar

[18] Q.Y. Wu, S.K. Wang, D.N. Li, X.F. Xie, I norg. Chem. Commun. 5(2002) 308–311.

Google Scholar

[19] Z.F. Li, J. Sun, L.P. You Y.X. Wang, J.H. Lin, J. Alloys Compd. 379 (2004) 117–121.

Google Scholar

[20] A.S. Nowick, in: G.E. Murch, A.S. Nowick(Eds. ), Diffusionin Crystalline Solids, Academic Press, New York, 1984, p.143–151.

Google Scholar