Investigation of Optical Properties of ZnO/MnO2, ZnO/TiO2 and ZnO/MnO2/TiO2 Nanocomposites

Article Preview

Abstract:

ZnO nanocomposites such as (ZnO) 0.8(MnO2)0.2, (ZnO) 0.8(TiO2)0.2and (ZnO) 0.8 (MnO2)0.1(TiO2)0.1 were prepared by solid state reaction method at room temperature. The structural analysis was carried out with help of powder XRD to confirm the formation of the composites. The morphological properties and presence of elemental compositions were analyzed with scanning electron microscope and energy dispersive analysis spectroscopy respectively. Optical properties were studied with UV visible spectrophotometer. From the transmittance spectrum, it is concluded that the synthesized composite materials have the transmittance in the range of 80 to 95% in the visible region. The calculated optical band gap values for pure ZnO is 3.16 eV and the values are 3.7eV, 5.27eV and 4.46eV for the composites ZnO/MnO2, ZnO/TiO2 and ZnO/MnO2/TiO2, respectively. The study has found that the ZnO/MnO2, ZnO/TiO2 and ZnO/MnO2/TiO2 composites have very large energy gap as that of insulator.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-127

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.K. Gupta, Aditee Joshi Man meet Kaur, J. Chem. Sci. Vol 1(2010) 122.

Google Scholar

[2] Yong-Seok Choi, Jang-Won Kang, Dae-Kue Hwang and Seang-JuPark, IEEE transaction of Electron Devices. Vol. 57(2010) 26.

Google Scholar

[3] Husnu Emrah Unalan, Yan Zhang, Pritesh Hiralal, Sharvari Dalai, Daping Chu, Goki Eda, K.B.K. Teo, Manish Chhowalla, William I. Milne and Gehan A.J. Amaratunga, Applied Physics Letters . 94 1635501( 2009) 163501.

DOI: 10.1063/1.3120561

Google Scholar

[4] Linxing Shi, Xangyin Li, Journal of Luminescence. 134 (2011) 834.

Google Scholar

[5] M. Jacobson, Nature Materials Advance Online Publication. (2011).

Google Scholar

[6] Yaohui Wang, Hao Liu, Xueliang Sun and Igor Zhitomirsky, Scripta Materialia. 61(2009) 1079.

Google Scholar

[7] Qian Cheng, Jie Tang, Jun Ma, Han Zhang, Norio Shinya, Lu-Chang Qin, Carbon. 49 (2011) 2917.

Google Scholar

[8] Nursen Avci, Philippe F. Smet, Hilde Poelman, Nigel Van de Velde, Klaartje De Buysser, Isabel Van Driessche, Dirk Poelman, J Sol-gel Sci Techonol, doi 10. 1007/s 10971-009-2028-9.

DOI: 10.1007/s10971-009-2028-9

Google Scholar

[9] C. Liu, Q. Fu, J.B. Wang, W.K. Zhao, Y.L. Fang, T. Mihara and M. Kiuchi, Journal of the Korean Physical Society. Vol, 46 S104.

Google Scholar

[10] Mingpeng Yu, Hongtao Sun, Xiang Sun, Fengyuan Lu, Gongkai Wang, Tao Hu2, Hong Qiu1 and Jie Lian, Int. J. Electrochem. Sci. 8(2013) 2313.

Google Scholar

[11] N. K. Pandey, K. Tiwari and Akash Roy. Bull. Mater. Sci. Vol. 35 (2012) 347.

Google Scholar

[12] Haixia Chen, Shuyi Ma, Yingfeng Li, Ligang Ma, and Xingli Huang. 978-1-4577-0321, © (2011) IEEE.

Google Scholar

[13] J.J. Lu a, Y.M. Lu , S.I. Tasi , T.L. Hsiung , H.P. Wang , L.Y. Jang , Optical Materials. 29 (2007) 1549.

Google Scholar

[14] Zhihua Yong, Tao Liu, TomoyaUruga, Hajime Tanida, Dongchen Qi, AndrivoRusydi and Andrew T. S. Wee, Materials (2010)3, 3642-3653; doi: 10. 3390/ma3063642.

Google Scholar