Structural and Magnetic Properties of Ultrafine Magnesium Ferrite Nanoparticles

Article Preview

Abstract:

Nanoparticles of MgFe2O4 with average crystallite size of ~ 8 nm have been synthesized employing non-aqueous combustion method. Structural properties of the nanoparticles are analyzed with the help of X-Ray Diffractometry (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-Ray analysis (EDX), Fourier Transform Infra-Red spectroscopy (FT-IR). X-Ray Diffraction pattern and FT-IR spectra reveal the formation of spinel structure of MgFe2O4 nanoparticles. The SEM micrographs of the sample show the formation of clusters of spherical particles with pores revealing the history of synthesis as combustion process. The constituent elements and chemical composition are analyzed using EDX spectrum. Magnetic study done using Vibrating Sample Magnetometer (VSM) reveals that the prepared nanoparticles remain unsaturated within the field of 15 kOe and have a very low coercivity of 20 Oe.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-133

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. A. Pankhurst, R. J. Pollard, Fine-particle magnetic oxides, J. Phys.: Condens. Matter 5 (1993) 487–8508.

DOI: 10.1088/0953-8984/5/45/002

Google Scholar

[2] P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, P.M. Schlag, Hyperthermia in combined treatment of cancer, The Lancet Oncol. 3 (2002) 487-497.

DOI: 10.1016/s1470-2045(02)00818-5

Google Scholar

[3] S. Prijic, G. Sersa, Magnetic nanoparticles as targeted delivery systems in oncology, Radiol. Oncol. 45 (2011) 1-16.

DOI: 10.2478/v10019-011-0001-z

Google Scholar

[4] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem. 14 (2004) 2161–2175.

DOI: 10.1039/b402025a

Google Scholar

[5] M. Jeun, S. Lee, Y. J. Kim, H. Y. Jo, K. H. Park, S. H. Paek, Y. Takemura, S. Bae, Physical Parameters to Enhance AC Magnetically Induced Heating Power of Ferrite Nanoparticles for Hyperthermia in Nanomedicine, IEEE Trans. Nanotech., 12 (2013).

DOI: 10.1109/tnano.2013.2247414

Google Scholar

[6] V. M. Khot, A. B. Salunkhe, N. D. Thorat, R. S. Ningthoujam, S. H. Pawar, Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia, Dalton Trans., 42 (2013) 1249-1258.

DOI: 10.1039/c2dt31114c

Google Scholar

[7] H. Hirazawa, H. Aono, T. Naohara, T. Maehara, M. Satoc, Y. Watanabe, Heat generation ability in AC magnetic field of nano MgFe2O4-based ferrite powder prepared by bead milling, J. Magn. Magn. Mater. 323 (2011) 675–680.

DOI: 10.1016/j.jmmm.2010.10.010

Google Scholar

[8] S. K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling, Mater. Chem. Phys. 93 (2005) 224–230.

DOI: 10.1016/j.matchemphys.2005.03.017

Google Scholar

[9] M. G. Naseria, M. H. M. Ara, E. B. Saion, A. H. Shaari, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method, J. Magn. Magn. Mater. 350 (2014) 141–147.

DOI: 10.1016/j.jmmm.2013.08.032

Google Scholar

[10] M. Raghasudhaa, D. Ravinder, P. Veerasomaiah, Investigation of superparamagnetism in MgCr0. 9Fe1. 1O4 nano-ferrites synthesized by the Citrate-gel method, J. Magn. Magn. Mater. 355 (2014) 210–214.

DOI: 10.1016/j.jmmm.2013.12.020

Google Scholar

[11] M. M. Rashad, Magnetic properties of nanocrystalline magnesium ferrite by co-precipitation assisted with ultrasound irradiation, J. Mater. Sci. 42 (2007) 5248–5255.

DOI: 10.1007/s10853-006-0389-9

Google Scholar

[12] Y. Tan, Z. Zhuang, Q. Peng, Y. Li, Room-Temperature Soft Magnetic Iron Oxide Nanocrystals: Synthesis, Characterization, and Size-Dependent Magnetic Properties, Chem. Mater. 20 (2008) 5029–5034.

DOI: 10.1021/cm801082p

Google Scholar

[13] L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas and G. J. Exarhos, Glycine- nitrate combustion synthesis of oxide ceramic powders, Mater. Lett. 10 (1990) 6–12.

DOI: 10.1016/0167-577x(90)90003-5

Google Scholar

[14] R. D. Waldron, Infrared Spectra of Ferrites, Phys. Rev. B. 99 (1955) 1727-1735.

DOI: 10.1103/physrev.99.1727

Google Scholar

[15] H. Arabi, N. K. Moghadam, Nanostructure and magnetic properties of magnesium ferrite thin films deposited on glass substrate by spray pyrolysis, J. Magn. Magn. Mater. 335 (2013) 144–148.

DOI: 10.1016/j.jmmm.2013.02.006

Google Scholar

[16] A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study, J. Magn. Magn. Mater. 320 (2008) 2774-2779.

DOI: 10.1016/j.jmmm.2008.06.012

Google Scholar

[17] A. Goldman, Modern Ferrite Technology, Second Ed., Van Nostrand Reinhold, New York, (1990).

Google Scholar

[18] A. Hernando, Magnetic properties and spin disorder in nano-crystalline materials, J. Phys.: Condens. Matter 11 (1999) 9455-9482.

DOI: 10.1088/0953-8984/11/48/308

Google Scholar

[19] R. H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater. 200 (1999) 359-372.

Google Scholar