Influence of Size on Effective Band Gap of Silicon Nano-Wire

Article Preview

Abstract:

In this article, the effect of wire-size on the effective band gap of Silicon (Si) is analyzed. The band gap is one of the most significant electronic parameters of semiconductor material. The band gap of semiconductor depends on temperature, pressure, composition, number of atoms as well as on the size of the particle. When semiconductors are synthesized at nanoscale level, their small particle size gives rise to quantum confinement and the energy bands are split into discrete levels. It is observed that effective band gap of semi-conductor depends on the size of the wire (number of atoms and dimensions) and it increases by decreasing the size of Si nanowire. The size quantization effect is noticed as a shift of the effective band gap toward lower values with increasing temperature of Si nanowire which also shows increase in atomic vibrations. Keywords: Size effect; Energy band gap; Semiconductor, effective mass; nanowire.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

322-326

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, K. Kim and H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater. 15 (2003) 353–389.

DOI: 10.1002/adma.200390087

Google Scholar

[2] W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, Synthesis and photoluminescence of ZnS: Cu nanoparticles, Opt. Mater. 29 (2006) 313–317.

Google Scholar

[3] C. Bouvy, F. Piret, W. Marine, B. L. Su, Preparation, photoluminescent properties and quantum size effect of ZnS nanoparticles @ mesoporous silica CMI-1, Chemical Physics Letters. 433 (2007) 350-354.

DOI: 10.1016/j.cplett.2006.11.085

Google Scholar

[4] D. Son, D. Jung, R. Kim, T. Moon, C. Kim, and B. Park, Synthesis and photoluminescence of Mn-doped zinc sulfide nanoparticles, Appl. Phys. Lett. 90 (2007) 101910.

DOI: 10.1063/1.2711709

Google Scholar

[5] A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Ragach, A. Eychmiiller, Luminescence Properties of Thiol-Stabilized CdTe Nanocrystals, J. Phys. Chem. B. 103 (1999) 10109.

DOI: 10.1021/jp9921809

Google Scholar

[6] X. D. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts, J. Phys. Chem. B. 108 (2004) 8773-8777.

DOI: 10.1021/jp048482e

Google Scholar

[7] A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. Journal of American Chemical Society. 128 (2006) 10310-10319.

DOI: 10.1021/ja0627601

Google Scholar

[8] Bhoopendra Dhar Diwan, Size Effect on the Cohesive Energy of Palladium Nanopar ticle, Journal of Computational and Theoretical Nanoscience. 10 (2013) 2779–2781.

DOI: 10.1166/jctn.2013.3278

Google Scholar

[9] Bhoopendra Dhar Diwan and N. Kumar Swamy, Dependency of Thermo-Physical Properties on Surface Bonding of BN Nano-crystal, International Journal of Modern Physics: Conference Series. 22 (2013) 525–529.

DOI: 10.1142/s2010194513010611

Google Scholar

[10] Xiao Hai, Tahir-Kheli Jamil and A. William, Accurate Band Gaps for Semiconductors from Density Functional Theory, J. Phys. Chem. Lett. 2 (2011) 212–217.

DOI: 10.1021/jz101565j

Google Scholar

[11] I. N. Remediakis and Efthimios Kaxiras, Electronic and optical properties of strained quantum dots modeled by 8-band kp theory, Physical Review B. 59 (1999) 5688–5701.

DOI: 10.1103/physrevb.59.5688

Google Scholar

[12] Baset Somaye, Akbari Hossein, Zeynali Hossein, Shafie Morteza, Size measurement of metal and semiconductor nanoparticles via UV-Vis absorption spectra, Digest Journal of Nanomaterials and Biostructures. 6-2 (2011) 709 – 716.

Google Scholar

[13] Baojie Yan, Guozhen Yue, L. Sivec, Chun-Sheng Jiang, Yanfa Yan, K. Alberi, J. Yang, S. Guha, Photovoltaic Specialists Conference (PVSC) proceedings, Honolulu (HI). 0160-8371, (2010).

DOI: 10.1109/pvsc.2010.5616075

Google Scholar

[14] Debjit Kar and Debajyoti Das, Wide band gap nanocrystalline silicon carbide thin films prepared by ICP-CVD, AIP Conf. Proc. 1512 (2012) 646-647.

DOI: 10.1063/1.4791203

Google Scholar

[15] Purabi Gogoi, Himanshu S. Jha, Pratima Agarwal, High band gap nanocrystallite embedded amorphous silicon prepared by hotwire chemical vapour deposition, Thin Solid Films. 518 (2010) 6818–6828.

DOI: 10.1016/j.tsf.2010.06.040

Google Scholar

[16] B. Rezguia, A. Sibaia, T. Nychyporuka, O. Martya, M. Lemitia and Georges Brémonda, Bandgap Engineering of Silicon Quantum Dot Nanostructures for High Efficient Silicon Solar Cell: The Tandem Approach, MRS Proceedings. N08-04 (2008) 1121.

DOI: 10.1557/proc-1121-n08-04

Google Scholar

[17] Chang-Hee Cho, Baek-Hyun Kim, Sang-Kyun Kim, and Seong-Ju Park, Characterization of electronic structure of silicon nanocrystals in silicon nitride by capacitance spectroscopy, Applied Physics Letters. 96 (2010) 223110.

DOI: 10.1063/1.3431572

Google Scholar

[18] Bhoopendra Dhar Diwan and Vinod Kumar Dubey, Size Dependence Effective Band Gap in GaSb Nano-solid, AIP Conf. Proc. 1536 (2013) 279.

DOI: 10.1063/1.4810209

Google Scholar

[19] Y. Kayanuma, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Phys. Rev. B. 38-14 (1988) 9797-9805.

DOI: 10.1103/physrevb.38.9797

Google Scholar

[20] C. Kittel, Introduction to Solid State Physics 6th Ed., New York: John Wiley, (1986).

Google Scholar

[21] Frank Blatt, J. Modern Physics, McGraw-Hill, (1992).

Google Scholar