Silicon Nanowire Embedded Spiral Photonic Crystal Fiber for Soliton-Effect Pulse Compression

Article Preview

Abstract:

In this paper, we propose a new type of optical waveguide called silicon nanowire embedded equai-angular spiral photonic crystal fiber (SN-SPCF) using fully vectorial finite element method, where closely arranged arrays of air holes act as cladding and nanosize silicon material at the centre acts as core. We show that the proposed nanowire embedded PCF of 400 nm core diameter exhibits high anomalous group velocity dispersion (-3148 ps2/km), small third order dispersion (-8.6591 ps3/km) and high nonlinearity (443.2 W-1m-1) at 1550 nm wavelength. Soliton-effect pulse compression of femtosecond pulses in a silicon nanowire-spiral photonic crystal fiber at 1550 nm is numerically studied. We demonstrate a pulse compression of 75 fs input pulse to about 4 fs by the simultaneous actions of both linear effects (a large anomalous group velocity dispersion and a small third order dispersion) and the nonlinear effect (an effective high nonlinearity).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

316-321

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Vasantha Jayakantha Raja, K. Senthilnathan, K. Porsezian and K. Nakkeeran, Efficient pulse compression using tapered photonic crystal fiber at 850 nm, IEEE J. Quantum Electron. 46 (2010) 1795-1803.

DOI: 10.1109/jqe.2010.2050865

Google Scholar

[2] J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, Optical pulse compression in dispersion decreasing photonic crystal fiber, Opt. Express. 15 (2007) 13203–13211.

DOI: 10.1364/oe.15.013203

Google Scholar

[3] B. B. Hu and M. C. Nuss, Imaging with terahertz waves, Opt. Let. 20 (1995) 1716– 1718.

Google Scholar

[4] T. Nagatsuma, M. Yaita, M. Shinagawa, K. Kato, A. Kozen, K. Iwatsuki, and K. Suzuki, Electrooptic characterization of ultrafast photodetectors using adiabatically compressed soliton pulses, Electron. Lett. 30 (1994) 814–816.

DOI: 10.1049/el:19940433

Google Scholar

[5] D. H. Auston and M. C. Nuss, Electrooptic generation and detection of femtosecond electrical transients, IEEE J. Quantum Electron. 24 (1988) 184–197.

DOI: 10.1109/3.114

Google Scholar

[6] J. Valdmanis and G. Mourou, Subpicosecond electrooptic sampling: Principles and applications, IEEE J. Quantum Electron. 22, (1986) 69–78.

DOI: 10.1109/jqe.1986.1072867

Google Scholar

[7] M. Foster, A. L. Gaeta, Q. Caoand, and R. Trebino, Soliton-effect compression of Supercontinuum to few-cycle durations in photonic nanowires, Opt. Express. 13 (2005) 6848– 685.

DOI: 10.1364/opex.13.006848

Google Scholar

[8] M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, Nonlinear optics in photonic nanowires, Opt Express. 16 (2008) 1300–1320.

DOI: 10.1364/oe.16.001300

Google Scholar

[9] F. Biancalana, T.X. Tran, S. Stark, M.A. Schmidt and P. St.J. Russell, Emergence of geometrical optical nonlinearities in photonic crystal fibre nanowires, Phys. Rev. Lett, 105 (2010) 093904.

DOI: 10.1103/physrevlett.105.093904

Google Scholar

[10] A. Agrawal, N. Kejalakshmy, B. M. A. Rahman and K.T. V. Grattan, Soft glass equiangular spiral photonic crystal fiber for supercontinuum generation, IEEE Photon. Tech. Lett. 21 (2009) 1722-1724.

DOI: 10.1109/lpt.2009.2032523

Google Scholar

[11] R. T. Bise and D. Trevor, Sol-gel derived microstructured fiber: fabrication and characterization, Technical Digest of Optical Fiber Communication Conference (OFC/OSA), Paper OWL6, Anaheim, California (2005).

DOI: 10.1109/ofc.2005.192772

Google Scholar

[12] G. P. Agrawal, Nonlinear fiber optics, Academic Press, San Diego, (2001).

Google Scholar