Method for Determining the Plastic Properties of Metallic Materials by Instrumented Indentation with Dual Pyramidal Indenters

Article Preview

Abstract:

Method for determining the plastic properties of metallic materials was proposed based on the functional relationships between representative stress, representative strain and nominal hardness which were established with the aid of dimensional analysis and finite element simulation. The errors of 0.2% yield strength and strain hardening exponent of five engineering metals were from-17.1% to 15.4% and from -0.125 to 0.11, respectively,which satisfied the need of engineering application and verified the effectiveness of the method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

1445-1452

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. C. Oliver, G. M. Pharr. J. Mater. Res. Vol. 7(1992), p.1564.

Google Scholar

[2] A. C. Fischer-Cripps. Nanoindentation(Springer-Verlag, New York 2004).

Google Scholar

[3] T. H. Zhang, Y. H. Feng, R. Yang, et al. Scripta. Mater. Vol. 62(2010), p.199.

Google Scholar

[4] A. Tricoteaux, G. Duarte, D. Chicot, et al. Mech. Mater. Vol. 42 (2010), p.166.

Google Scholar

[5] Y. T. Cheng, C. M. Cheng. J. Mater. Res. Vol. 14(1999), p.3493.

Google Scholar

[6] M. Futakawa , T. Wakui , Y. Tanabe , et al . J. Mater. Res. Vol. 16(2001), p.2283.

Google Scholar

[7] M. Dao, N. Chollacoop, K. J. Van, et al. Acta Mater. Vol. 49(2001), p.3899.

Google Scholar

[8] N. Chollacoop, M. Dao and S. Suresh. Acta Mater. Vol. 51(2003), p.3713.

Google Scholar

[9] Y. P. Cao, X. Q. Qian, J. Lu, et al. J. Mater. Res. Vol. 20(2005), 1194.

Google Scholar

[10] J. Luo, J. Lin. Int. J. Solids Struct. Vol. 44(2007), p.5803.

Google Scholar

[11] C. Heinrich, A. M. Waas and A. S. Wineman. Int. J. Solids Struct. Vol. 46(2009), p.364.

Google Scholar

[12] Y. L. Huang, X. F. Liu, Y. C. Zhou, et al. J. Mater. Sci. Technol. Vol. 27(2011), p.577.

Google Scholar

[13] Z. S. Ma, Y. C. Zhou, S. G. Long, et al. Sci China Phys. Mech. Vol. 55(2012), p.1032.

Google Scholar

[14] A. Hasanov , Z. Muradoglu. Int. J. Non-Linear Mech. Vol. 47(2012), p.526.

Google Scholar

[15] J. L. Bucaille, S. Stauss and E. Felder. Acta Mater. Vol. 51(2003), p.1663.

Google Scholar

[16] M. Q. Le. Int. J. Solids Struct. Vol. 48(2011), p.1600.

Google Scholar

[17] X. Chen, N. Ogasawara, M. H. Zhao, et al. J. Mech. Phys. Solids Vol. 55(2007), p.1618.

Google Scholar

[18] N. Ogasawara, N. Chiba and X. Chen. J. Mater. Res. Vol. 20(2005), p.2225.

Google Scholar

[19] H. Pelleetier, J. Krier. Thin Solid Films Vol. 379(2000), p.147.

Google Scholar

[20] ABAQUS: Version 6. 2 Hibbitt, Karlsson&Sorensen, Inc., Pawtucket, RI, (2001).

Google Scholar

[21] D. Ma, C. W. Ong. J. Mater. Sci. Vol. 45(2010), p.2530.

Google Scholar