Effect of Strain on Microstructures and Mechanical Properties of Warmly Deformed SCRAM Steel for Fusion Application

Article Preview

Abstract:

The SCRAM steel was processed by warm deformation on Gleeble-3500 thermo-simulation machine. The effect of strain on the microstructures and mechanical properties of SCRAM steel was investigated. The results show that an increase in the strain can result in refining the martensitic laths, increasing the volume fraction of precipitates and the dislocation density in SCRAM steel. The martensitic lath width decreases from 0.83 μm to 0.48 μm and the dislocation density increases from 1.3 × 1015 m-2 to 6.4 × 1015 m-2 in SCRAM steel. The specimen exhibits high ultimate tensile strength and yield strength but low reduction of area and total elongations when the strain (ε) is up to 0.5. The tensile fracture surface observation indicates that dimples become smaller and shallower while tear ridges drastically grow up with the strain increasing.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

1463-1468

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. van der Schaaf, D.S. Gelles, S. Jitsukawa, et al., Progress and Critical Issues of Reduced Activation Ferritic/Martensitic Steel Development. J. Nucl. Mater. 2000, 283-287: 52-59.

DOI: 10.1016/s0022-3115(00)00220-8

Google Scholar

[2] H. Tanigawa, K. Shiba, H. Sakasegawa, et al., Technical Issues Related to the Development of Reduced-activation Ferritic/Martensitic Steels as Structural Materials for a Fusion Blanket System [J]. Fus. Eng. Des. 2011, 86: 2549-2552.

DOI: 10.1016/j.fusengdes.2011.04.047

Google Scholar

[3] R.L. Klueh, D.S. Gelles, S. Jitsukawa, et al., Ferritic/Martensitic Steels – Overview of Recent Results, J. Nucl. Mater. 307-311 (2002) 455-465.

DOI: 10.1016/s0022-3115(02)01082-6

Google Scholar

[4] H. Ullmaier, H. Trinkaus, Helium in Metals: Effect on Mechanical Properties, Mater. Sci. Forum. 97-99 (1992) 451.

DOI: 10.4028/www.scientific.net/msf.97-99.451

Google Scholar

[5] H. Trinkaus, B.N. Singh, Helium Accumulation in Metals during Irradiation - Where Do We Stand? J. Nucl. Mater. 2003, 323: 229-242.

DOI: 10.1016/j.jnucmat.2003.09.001

Google Scholar

[6] J. Henry, M. -H. Mathon, P. Jung, Microstructural Analysis of 9% Cr Martensitic Steels Containing 0. 5 at. % Helium, J. Nucl. Mater. 2003, 318: 249-259.

DOI: 10.1016/s0022-3115(03)00118-1

Google Scholar

[7] S. Fréchard, M. Walls, M. Kociak, et al., Study by EELS of Helium Bubbles in a Martensitic Steel, J. Nucl. Mater. 2009, 393: 102-107.

DOI: 10.1016/j.jnucmat.2009.05.011

Google Scholar

[8] A. Kimura, R. Kasada, K. Morishita, et al., High Resistance to Helium Embrittlement in Reduced Activation Martensitic Steels, J. Nucl. Mater. 2002, 307-311: 521-526.

DOI: 10.1016/s0022-3115(02)01211-4

Google Scholar

[9] A. Kimura, R. Kasada, A. Kohyama, et al., Recent Progress in US-Japan Collaborative Research on Ferritic Steel R&D, J. Nucl. Mater. 2007, 367-370: 60-67.

DOI: 10.1016/j.jnucmat.2007.03.013

Google Scholar

[10] N. Baluc, D.S. Gelles, S. Jitsukawa, et al., Status of Reduced Activation Ferritic/Martensitic Steel Development, J. Nucl. Mater. 2007, 367-370: 33-41.

DOI: 10.1016/j.jnucmat.2007.03.036

Google Scholar

[11] F. Zhao, J.S. Qiao, Y. Huang, et al., Effect of Irradiation Temperature on Void Swelling of China Low Activation Martensitic Steel (CLAM), Mater. Charact. 2008, 59: 344.

DOI: 10.1016/j.matchar.2007.01.014

Google Scholar

[12] X.S. Xiong, F. Yang, X.R. Zou, et al., Effect of Twice Quenching and Tempering on the Mechanical Properties and Microstructures of SCRAM Steel for Fusion Application, J. Nucl. Mater. 2012, 430: 114-118.

DOI: 10.1016/j.jnucmat.2012.06.047

Google Scholar

[13] J. Pěsička, R. Kužul, A. Dronhofer, G. Eggeler, The Evolution of Dislocation Density during Heat Treatment and Creep of Tempered Martensite Ferritic Steels, Acta Mater. 2003, 51: 4847-4862.

DOI: 10.1016/s1359-6454(03)00324-0

Google Scholar

[14] D. Rojas, J. Garcia, O. Prat, et al., Effect of Processing Parameters on the Evolution of Dislocation Density and Sub-grain Size of a 12%Cr Heat Resistant Steel During Creep at 650 ºC, Mater. Sci. Eng. A. 2011, 528: 1372-1381.

DOI: 10.1016/j.msea.2010.10.028

Google Scholar

[15] C. Gaudin, X. Feaugas, Cyclic Creep Process in AISI 316L Stainless Steel in Terms of Dislocation Patterns and Internal Stresses, Acta Mater. 2004, 52: 3097-3110.

DOI: 10.1016/j.actamat.2004.03.011

Google Scholar

[16] K. Takasawa, R. Ikeda, et al., Effects of Grain Size and Dislocation Density on the Susceptibility to High-pressure Hydrogen Environment Embrittlement of High-strength Low-alloy Steels, Int J Hydrogen Energy, 2012, 37: 2669-2675.

DOI: 10.1016/j.ijhydene.2011.10.099

Google Scholar

[17] B. Hoffmann, O. Vӧhringer, E. Macherauch, Effect of Compressive Plastic Deformation on Mean Lattice Strains, Dislocation Densities and Flow Stresses of Martensitically Hardened, Mater. Sci. Eng. A. 2001, 319-321: 299-303.

DOI: 10.1016/s0921-5093(01)00978-9

Google Scholar

[18] N. Saeidi, A. Ekrami, Impact Properties of Tempered Bainite–ferrite Dual Phase Steels, Mater. Sci. Eng. A. 2010, 527: 5575-5581.

DOI: 10.1016/j.msea.2010.05.015

Google Scholar

[19] B. Viguier, Dislocation Densities and Strain Hardening Rate in Some Intermetallic Compounds, Mater. Sci. Eng. A. 2003, 349: 132-135.

DOI: 10.1016/s0921-5093(02)00785-2

Google Scholar