[1]
B. van der Schaaf, D.S. Gelles, S. Jitsukawa, et al., Progress and Critical Issues of Reduced Activation Ferritic/Martensitic Steel Development. J. Nucl. Mater. 2000, 283-287: 52-59.
DOI: 10.1016/s0022-3115(00)00220-8
Google Scholar
[2]
H. Tanigawa, K. Shiba, H. Sakasegawa, et al., Technical Issues Related to the Development of Reduced-activation Ferritic/Martensitic Steels as Structural Materials for a Fusion Blanket System [J]. Fus. Eng. Des. 2011, 86: 2549-2552.
DOI: 10.1016/j.fusengdes.2011.04.047
Google Scholar
[3]
R.L. Klueh, D.S. Gelles, S. Jitsukawa, et al., Ferritic/Martensitic Steels – Overview of Recent Results, J. Nucl. Mater. 307-311 (2002) 455-465.
DOI: 10.1016/s0022-3115(02)01082-6
Google Scholar
[4]
H. Ullmaier, H. Trinkaus, Helium in Metals: Effect on Mechanical Properties, Mater. Sci. Forum. 97-99 (1992) 451.
DOI: 10.4028/www.scientific.net/msf.97-99.451
Google Scholar
[5]
H. Trinkaus, B.N. Singh, Helium Accumulation in Metals during Irradiation - Where Do We Stand? J. Nucl. Mater. 2003, 323: 229-242.
DOI: 10.1016/j.jnucmat.2003.09.001
Google Scholar
[6]
J. Henry, M. -H. Mathon, P. Jung, Microstructural Analysis of 9% Cr Martensitic Steels Containing 0. 5 at. % Helium, J. Nucl. Mater. 2003, 318: 249-259.
DOI: 10.1016/s0022-3115(03)00118-1
Google Scholar
[7]
S. Fréchard, M. Walls, M. Kociak, et al., Study by EELS of Helium Bubbles in a Martensitic Steel, J. Nucl. Mater. 2009, 393: 102-107.
DOI: 10.1016/j.jnucmat.2009.05.011
Google Scholar
[8]
A. Kimura, R. Kasada, K. Morishita, et al., High Resistance to Helium Embrittlement in Reduced Activation Martensitic Steels, J. Nucl. Mater. 2002, 307-311: 521-526.
DOI: 10.1016/s0022-3115(02)01211-4
Google Scholar
[9]
A. Kimura, R. Kasada, A. Kohyama, et al., Recent Progress in US-Japan Collaborative Research on Ferritic Steel R&D, J. Nucl. Mater. 2007, 367-370: 60-67.
DOI: 10.1016/j.jnucmat.2007.03.013
Google Scholar
[10]
N. Baluc, D.S. Gelles, S. Jitsukawa, et al., Status of Reduced Activation Ferritic/Martensitic Steel Development, J. Nucl. Mater. 2007, 367-370: 33-41.
DOI: 10.1016/j.jnucmat.2007.03.036
Google Scholar
[11]
F. Zhao, J.S. Qiao, Y. Huang, et al., Effect of Irradiation Temperature on Void Swelling of China Low Activation Martensitic Steel (CLAM), Mater. Charact. 2008, 59: 344.
DOI: 10.1016/j.matchar.2007.01.014
Google Scholar
[12]
X.S. Xiong, F. Yang, X.R. Zou, et al., Effect of Twice Quenching and Tempering on the Mechanical Properties and Microstructures of SCRAM Steel for Fusion Application, J. Nucl. Mater. 2012, 430: 114-118.
DOI: 10.1016/j.jnucmat.2012.06.047
Google Scholar
[13]
J. Pěsička, R. Kužul, A. Dronhofer, G. Eggeler, The Evolution of Dislocation Density during Heat Treatment and Creep of Tempered Martensite Ferritic Steels, Acta Mater. 2003, 51: 4847-4862.
DOI: 10.1016/s1359-6454(03)00324-0
Google Scholar
[14]
D. Rojas, J. Garcia, O. Prat, et al., Effect of Processing Parameters on the Evolution of Dislocation Density and Sub-grain Size of a 12%Cr Heat Resistant Steel During Creep at 650 ºC, Mater. Sci. Eng. A. 2011, 528: 1372-1381.
DOI: 10.1016/j.msea.2010.10.028
Google Scholar
[15]
C. Gaudin, X. Feaugas, Cyclic Creep Process in AISI 316L Stainless Steel in Terms of Dislocation Patterns and Internal Stresses, Acta Mater. 2004, 52: 3097-3110.
DOI: 10.1016/j.actamat.2004.03.011
Google Scholar
[16]
K. Takasawa, R. Ikeda, et al., Effects of Grain Size and Dislocation Density on the Susceptibility to High-pressure Hydrogen Environment Embrittlement of High-strength Low-alloy Steels, Int J Hydrogen Energy, 2012, 37: 2669-2675.
DOI: 10.1016/j.ijhydene.2011.10.099
Google Scholar
[17]
B. Hoffmann, O. Vӧhringer, E. Macherauch, Effect of Compressive Plastic Deformation on Mean Lattice Strains, Dislocation Densities and Flow Stresses of Martensitically Hardened, Mater. Sci. Eng. A. 2001, 319-321: 299-303.
DOI: 10.1016/s0921-5093(01)00978-9
Google Scholar
[18]
N. Saeidi, A. Ekrami, Impact Properties of Tempered Bainite–ferrite Dual Phase Steels, Mater. Sci. Eng. A. 2010, 527: 5575-5581.
DOI: 10.1016/j.msea.2010.05.015
Google Scholar
[19]
B. Viguier, Dislocation Densities and Strain Hardening Rate in Some Intermetallic Compounds, Mater. Sci. Eng. A. 2003, 349: 132-135.
DOI: 10.1016/s0921-5093(02)00785-2
Google Scholar