Laser-Energy-Density Dependent Formation of Al2O3-TiC Coating by Laser-Assisted Combustion

Article Preview

Abstract:

Al2O3-TiC composite ceramic coatings were obtained by laser-assisted combustion. Al-TiO2-C precursor powder mixture was coated on a medium-carbon steel substrate. When a laser scanned on the powder mixture, it went through combustion synthesis reaction triggered by the incident laser beam and formed the target products. The microstructure of the obtained coatings with different laser processing parameters was characterized using field emission scanning electron microscopy. The laser energy density, controlled by changing laser power and laser scanning speed, was found to play an important role on the microstructure of the products. The formation mechanism of different micro-morphologies with different laser energy densities was proposed according to thermodynamic calculation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

2182-2189

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Vilar: J. Laser Appl. Vol. 11 (1999), p.64.

Google Scholar

[2] H.C. Man, C.T. Kwok, T.M. Yue: Sur. Coat. Technol. Vol. 132 (2000), p.11.

Google Scholar

[3] D.S. Wang, Z.J. Tian, L.D. Shen: Appl. Surf. Sci. Vol. 255 (2009), p.4606.

Google Scholar

[4] A. Hidouci, J.M. Pelletier, F. Ducoin, et al.: Sur. Coat. Technol. Vol. 123 (2000), p.17.

Google Scholar

[5] N.P. Padture, M. Gell, E.H. Jordan: Science Vol. 296 (2002), p.280.

Google Scholar

[6] R. Anandkumar, A. Almeida, R. Vilar: Wear Vol. 282 (2012), p.31.

Google Scholar

[7] B. Szczygiel, M. Kolodziej: Electrochim. Acta Vol. 50 (2005), p.4188.

Google Scholar

[8] M. Masanta, P. Ganesh, R. Kaul: Mater. Sci. Eng. A Vol. 508 (2009), p.134.

Google Scholar

[9] H.B. Liu, J. Tao, J. Xu, et al.: J. Nucl. Mater. Vol. 378 (2008), p.134.

Google Scholar

[10] E. Serra, P.J. Kelly, D.K. Ross, R.D. Arnell: J. Nucl. Mater. Vol. 257 (1998), p.194.

Google Scholar

[11] Z.Y. Yao, J.K. Hao, C. S Zhou, et al.: J. Nucl. Mater. Vol. 283-287 (2000), p.1287.

Google Scholar

[12] S. Chatterjee, P. Ganesh, R. Palai: Surf. Coat. Technol. Vol. 204 (2010), p.1702.

Google Scholar

[13] H. G. Zhu, Y. L. Jiang, Y. Q. Yao: Mater. Chem. Phys. Vol. 137 (2012), p.532.

Google Scholar

[14] Y.X. Li, J.K. Yao and Y. Liu: Surf. Coat. Technol. Vol. 172 (2003), p.57.

Google Scholar

[15] S.H. Liu et al.: Laser Materials Processing (Huazhong University of Science and Technology Press, P. R. China 2011).

Google Scholar

[16] Y.X. Li, Y. Liu, H.Y. Geng: J. Mater. Process. Technol. Vol. 171 (2006), p.405.

Google Scholar

[17] D.L. Ye and J.H. Hu: Practical Thermodynamic Handbook of Inorganic Substances (Metallurgical Industry Press, P. R. China 2002).

Google Scholar

[18] H. Nakae, S.S. Wu: Mater. Sci. and Eng. A Vol. 252 (1998), p.232.

Google Scholar