The Fabrication of High Silicon-Aluminum Composites and the Thermal Conductivity

Article Preview

Abstract:

Silicon-aluminum composites with Si content of 42-70 wt. % were fabricated by an innovative method of liquid-solid separation. The microstructures and thermal conductivity analyzing and predicting by the Maxwell and Hasselman-Johnson models were executed. The results show that silicon particles in composites are near globular with dull angular and surrounded by the continuous Al matrix, and the interface among them is composed of element diffusion zone. The conductivities of four composites are beyond 120 W. m-1 .K-1 at 25°C but reduce with Si content adding. The coarse particle size is beneficial to the higher conductivity. The interface thermal resistance of composites obtained by theoretical calculation is 16.0×107 W.m-2.K-1, and using it the H-J model can be employed to predict the conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

288-293

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Carl. J. Min. Met. & Mat. Soc., Vol. 50 ( 1998), p.47.

Google Scholar

[2] X.H. Qu, L. Zhang, M. Wu, S.B. Ren. Pro. Natu. Sci.: Mat. Inter., Vol. 21(2011), p.189.

Google Scholar

[3] D.M. Jacobson. Adv. Mat. & Pro., Vol. 157(2006), p.36.

Google Scholar

[4] Y.P. Wu, S.J. Wang, H. Li. J. allo. and comp., Vol. 477(2009), p.139.

Google Scholar

[5] Information on http: /www. smt. sandvik. com.

Google Scholar

[6] K. Yu, C. Li. Mat. Trans., Vol. 49(2008), p.685.

Google Scholar

[7] Y.Y. Chen, D. D. L. Chung. J. Mat. Sci., Vol. 29(1994), p.6069.

Google Scholar

[8] C.W. Chien. Mat. Lett., Vol. 52(2002), p.334.

Google Scholar

[9] G.H. Wu, Z.Y. Xiu, Q. Zhang. J. ShangHai JiaoTong Univer., Vol. 41(2007), pp.14-4 s.

Google Scholar

[10] P.Y. Yang, Z.Q. Zheng, Y. Cai, S.C. Li, X. Feng. China J. Rare Met., Vol. 28(2004) , p.160.

Google Scholar

[11] Y.Q. Liu, S.H. Wei, T. Zuo. China J. Rare Met., Vol. 36(2012) , p.876.

Google Scholar

[12] Y.X. Li, J.Y. Liu, G.Q. Liu, Q.J. Jia. Trans. Met. Heat Treat., Vol. 33(2012), p.40.

Google Scholar

[13] E.A. Virira, M. Ferrante. Acta Mat., Vol. 53(2005), pp.5379-5386.

Google Scholar

[14] Y. X. Li, J.Y. Liu, W.S. Wang, G.Q. Liu. Trans. Nonferr. Met. Soc. China, Vol. 23(2013), p.970.

Google Scholar

[15] X. F. Wang, G.H. Wu, R.C. Wang. Trans. Nonfer. Met. Soc. China, Vol. 17(2007), p. 1039s.

Google Scholar

[16] D.P.H. Hasselman, F.J. Lloyd. J. Com., Vol. 21(1987), p.508.

Google Scholar

[17] R. Tavangar, J.M. Molina, L. Weber. Scrip. Mat. , Vol. 56(2007), p.357.

Google Scholar

[18] K. Chu, C.C. Jia, X.B. Liang. Mat. & Desin., Vol. 30(2009), p.3497.

Google Scholar

[19] Y. Ji, T.X. Zhong, X.X. Gao, L.F. Wu. J. China Electr. Micro. Soc., Vol. 20(2001), p.238.

Google Scholar

[20] Y. X. Li, J.Y. Liu, G.Q. Liu. Adv. Mat. Res., Vol. 490-495(2012), p.3266.

Google Scholar