Properties of Metallic Materials after Surface Self Nano-Crystallization

Article Preview

Abstract:

Surface Self-nanocrystallization (SSNC) can produce nanometer grains (10~50μm depth) in the surface layer of metallic materials. And high strength, residual compressive stress as well as a mass of defects attributed to grain refinement and severe plastic deformation, greatly improve their surface properties, such as strength, wear resistance, diffusion property, fatigue performance and corrosion resistance. Now some methods have been confirmed which could realize surface nanocrystallization. This paper reviews the study of surface nanocrystallization and simply summarizes changes in their performance based on surface layer microstructure of metallic materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

416-420

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Gleiter: Acta Mater, Vol. 48 (2000), pp.1-29.

Google Scholar

[2] J. R. Weertman: Mater Sci Eng, Vol. A166 (1993), pp.161-167.

Google Scholar

[3] R. W. Siegel and G. E. Fougere: Nanost Mater, Vol. 6 (1995), pp.205-216.

Google Scholar

[4] H.L. Wang, Z.B. Wang and K. Lu: Acta Materialia, Vol. 59 (2011), p.1818–1828.

Google Scholar

[5] R. Z. Valiev and I. V. Islamgaliev: Prog Mater Sci, Vol. 45(2) (2000), pp.103-189.

Google Scholar

[6] K Lu and J Lu: Journal of Material Science & Technology, Vol. 15(3) (1999), pp.193-197.

Google Scholar

[7] T. Roland, D. Retraint, K Lu, et al: Scripta Mterialia, Vol. 54 (2006), p.1949-(1954).

Google Scholar

[8] X. M Fan, B. S Zhou, L Zhu, et al: Mater Sci. Vol. 475/479 (2005), p.133.

Google Scholar

[9] Masahide Satoa, Nobuhiro Tsujib, Yoritoshi Minaminob, et al: Science and Technology of Advance Materials, Vol. 5 (2004), pp.145-152.

Google Scholar

[10] N R Tao. M L Sui and J Lu: NonoStructured Materials, Vol. 11(4) (1999), pp.433-440.

Google Scholar

[11] B. N. Mordyuk, and G. I. Prokopenko: Materials Science and Engineering A, Vol. 437 (2006), pp.396-405.

Google Scholar

[12] G Liu, J Lu, and K Lu: Materials Science and Engineering, Vol. A286 (2000), p. 9l-95.

Google Scholar

[13] H W Zhang, Z K Hei, G Liu, et a1: Acta Materialia, Vol. 51l (2003), pp.1871-1881.

Google Scholar

[14] S. Bagherifarda, I. Fernández Pariente, R. Ghelichi, and M. Guagliano: Procedia Engineering, Vol. 2 (2010), p.1683–1690.

Google Scholar

[15] S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, and M. Guagliano: Materials and Design, Vol. 45 (2013), p.497–503.

DOI: 10.1016/j.matdes.2012.09.025

Google Scholar

[16] S. Anand Kumar, S. Ganesh Sundara Raman, T.S.N. Sankara Narayanan, and R. Gnanamoorthy: Surface & Coatings Technology, Vol. 206 (2012), p.4425–4432.

DOI: 10.1016/j.surfcoat.2012.04.085

Google Scholar

[17] S. Anand Kumar, S. Ganesh Sundara Raman, T.S.N. Sankara Narayanan, and R. Gnanamoorthy: Tribology International, Vol. 57 (2013), p.107–114.

DOI: 10.1016/j.triboint.2012.07.021

Google Scholar

[18] Yunwei Hao, Bo Deng, Cheng Zhong, Yirning Jiang, and Jin Li: Journal of Iron and Steel Research, International. Vol. 16(2) (2009), pp.68-72.

Google Scholar

[19] B.N. Mordyuk, O.P. Karasevskaya, G.I. Prokopenko, and N.I. Khripta: Surface & Coatings Technology, Vol. 210 (2012), p.54–61.

DOI: 10.1016/j.surfcoat.2012.08.063

Google Scholar

[20] Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, and K. Lu: Acta Materialia, Vol. 51 (2003), p.4319–4329.

Google Scholar

[21] H.L. Wang, Z.B. Wang, and K. Lu: Acta Materialia, Vol. 60 (2012), p.1762–1770.

Google Scholar

[22] Y.N. Shi, and Z. Han: Key Engineering Materials, Vol. 384 (2008), pp.321-334.

Google Scholar

[23] J. Chen, L. Lu, and K. Lu: Scripta Materialia, Vol. 54 (2006), p.1913–(1918).

Google Scholar

[24] T. Roland, D. Retraint, K. Lu and J. Lu: Materials Science and Engineering A, Vol. 445–446 (2007), p.281–288.

Google Scholar

[25] X.H. Chen a, J. Lu b, L. Lu a, and K. Lu: Scripta Materialia, Vol. 52 (2005), p.1039–1044.

Google Scholar

[26] Y. S. Zhang and Z. Han: Tribology Letters, Vol. 27, No. 1, (2007), pp.53-59.

Google Scholar

[27] Y.S. Zhang, Z. Han, K. Wang, and K. Lu: Wear, Vol. 260 (2006), p.942–948.

Google Scholar

[28] W.L. Li, N.R. Tao, Z. Han, and K. Lu: Wear, Vols. 274– 275 (2012), p.306– 312.

Google Scholar

[29] Z. Han, L. Lu and K. Lu: Tribology Letters, Vol. 21, No. 1, (2006), pp.47-52.

Google Scholar

[30] Y.S. Zhang, K. Wang, Z. Han, and G. Liu: Wear, Vol. 262 (2007) 1463–1470.

Google Scholar

[31] Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, and K. Lu: Defect and Diffusion, Forum Vol. 249 (2006), pp.147-154.

Google Scholar

[32] Z.B. Wang, K. Wang, K. Lu, G. Wilde, and S. Divinski: Defect and Diffusion, Forum Vols. 289-292 (2009), pp.557-563.

DOI: 10.4028/www.scientific.net/ddf.289-292.557

Google Scholar

[33] Z.B. Wang, K. Lu, G. Wilde, and S.V. Divinski: Acta Materialia Vol. 58 (2010), p.2376–2386.

Google Scholar

[34] H. W. Huang, Z. B. Wang, X. P. Yong, and K. Lu: Materials Science and Technology, Vol. 29 No. 10 (2013).

Google Scholar