The Influence of Zn/Zr Ratios on CuO-ZnO-ZrO2 Catalysts for Methanol Synthesis from CO2 Hydrogenation

Article Preview

Abstract:

A series of CuO–ZnO–ZrO2 (CZZ) catalysts with different Zn/Zr ratios were successfully prepared by the co-precipitation method and characterized by the techniques of X-ray diffraction (XRD), N2 adsorption, reactive N2O adsorption, H2 temperature-programmed reduction (H2-TPR). The catalytic activities of the catalysts were tested for methanol synthesis from CO2 hydrogenation. It was found that the increasing of the Zn/Zr ratio could lead to the increase of the crystallite size of metallic oxide. When the amount of ZnO ranged from 20% to 80%, the CZZ catalysts exhibited a better activity. It revealed that both Zn and Zr were important parameter for Cu-based catalysts, which were interacted with each other.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

425-429

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Olah: Catal. Lett. 93 (2004) 1.

Google Scholar

[2] R. Raudaskoski, E. Turpeinen, R. Lenkkeri, E. Pongrácz, R.L. Keiski: Catal. Today. 144 (2009) 318.

Google Scholar

[3] F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri: J. Catal. 249(2007) 185.

Google Scholar

[4] Y. Ma, Q. Sun, D. Wu, W.H. Fan, Y.L. Zhang, J.F. Deng: Appl. Catal. A: Gen. 171(1998) 45.

Google Scholar

[5] X.M. Liu, G.Q. Lu, Z.F. Yan: Appl. Catal. A: Gen. 279 (2005) 241.

Google Scholar

[6] R.A. Kӧppel, C. Stӧcker, A. Baiker: J. Catal. 179 (1998) 515.

Google Scholar

[7] P.F. Zhu, J. Li, S.F. Zuo, R.X. Zhou: Appl. Surf. Sci. 255 (2008) 2903.

Google Scholar

[8] C.L. Carnes, K.J. Klabunde: J. Mol. Catal. A Chem. 194 (2003) 227.

Google Scholar

[9] J. Agrell, M. Boutonnet, I. Melian-Cabrera, J.L.G. Fierro: Appl. Catal. A Gen. 253(2003) 201.

Google Scholar

[10] W. G. GAO, H. WANG, Y. H. WANG: J Rare Earth. 31 (2013) 470.

Google Scholar

[11] F. Arena, G. Italiano, K. Barbera: Appl. Catal. A Gen. 350 (2008) 16.

Google Scholar

[12] G.A. E1-Shobaky, G.A. Fagal, M. Mokhtar: Appl. Catal. A Gen. 155 (1997) 167.

Google Scholar

[13] R. Grabowski, J. Szoczynski, M. Sliwa: ACS Catal. 1 (2011) 266.

Google Scholar

[14] S. k. Xu, Y. L. SU, L. M. LI: J Fuel Chem Technol. 35 (2007) 696.

Google Scholar

[15] L. C. Wang, Q. Liu, M. Chen: J. Phys. Chem. C. 111 (2007) 16549.

Google Scholar

[16] G. Avgouropoulos, T. Ioannides, H. Matralis: Appl. Catal. B Environ. 56 (2005) 87.

Google Scholar

[17] K. A. Pokrovski, A. T. Bell: J. Catal. 241(2006) 276.

Google Scholar

[18] H. D. Zhang, S. F. Bai, X. M. Liu: J Fuel Chem Technol. 38 (2010) 462.

Google Scholar

[19] G. Fierro, M. Lo Jacono, M. Inversi, p. Porta: Appl. Catal. A Gen. 137 (1996) 327.

Google Scholar