Simulation of Electric Field for Carbon Nanotube Assembly by Dielectrophoresis

Article Preview

Abstract:

In the process of carbon nanotube assembly by dielectrophoresis, the geometry and spacing of electrodes are significantly affecting the assembly precision. In the simulation process, we showed the geometrical shape of conical, round and rectangular electrode and compared the electric field distribution with these electrodes. Compared with single electrode pairs, comb electrodes can achieve high-yield manipulation. Simulation results show that when the distance between adjacent electrode pairs is larger than twice electrode width, it will avoid electric field superimposition. A method of using floating metal posts within the electrode gap can realize precise positioning of assembled carbon nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

421-424

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.H. Baughamn, A. A Zakhidov: Science Vol. 297 (2002), p.787.

Google Scholar

[2] J. Li, Q. Zhang and N. Peng: Appl. Phys. Lett. Vol. 86 (2005), p.153116.

Google Scholar

[3] R. Li, H.B. Li and Q.W. Li: Mater. Rev. Vol. 27 (2013), p.50.

Google Scholar

[4] L. An, C. Friedrich: Appl. Phys. Lett. Vol. 92(2008), p.173103.

Google Scholar

[5] A.M. Cassell, N.R. Franklin and T.W. Tombler: J. Amer. Chem. Soc. Vol. 121 (1999), p.7975.

Google Scholar

[6] Y.K. Ren, H.R. Ao and J.H. Gu: Acta Physica. Sinica Vol. 58(2009), p.7869.

Google Scholar

[7] S.G. Kwon, H. Kim and K.H. Kin: T. Nonferr. Metal. Soc. Vol. 21(2011), p.117.

Google Scholar

[8] J.E. Kim, C.S. Han: Nanotechnology Vol. 16(2005), p.2245.

Google Scholar

[9] H. Morgan, N.G. Green: AC Electrokinetics: colloids and nanoparticles (Research Studies Press LTD, England 2003).

Google Scholar

[10] D.D. Xu, A. Subramanian and L.X. Dong: Nanotechnology Vol. 8 (2009), p.449.

Google Scholar

[11] L. An, C. Friedrich: J. Appl. Phys. Vol. 105 (2009), p.074314.

Google Scholar

[12] C.S. Han, H.W. Seo and H.W. Lee: Int. J. Precis. Eng. Man. Vol. 7 (2006), p.42.

Google Scholar

[13] C.D. Wu, K. Xu and X.J. Tian: J. of Northeast. Univ., Nat. Sci. (China) Vol. 32 (2011), p.1072.

Google Scholar

[14] F. Fei, Y.L. Qu and W.R. Li: Computer Simulation Vol. 25 (2008), p.314.

Google Scholar

[15] M. Dimaki, P. Boggild: Nanotechnology Vol. 15 (2004), p.1095.

Google Scholar

[16] Y. Wu, F.Z. Zheng and J.J. Bai: (ICCI*CC) 2012 IEEE International Conference on, Kyoto (2012), p.518.

Google Scholar

[17] X.H. Song, P.F. Yu and Y. Wu: Henan Science Vol. 30 (2012), p.1213.

Google Scholar

[18] Y. Lu, C.X. Chen and L. Yang: Nanoscale Res Lett Vol. 4 (2009), p.157.

Google Scholar

[19] S. Auvray, V. Derycke and M. Goffman: Nano Lett. Vol. 5(2005), p.451.

Google Scholar

[20] S. Banerjee, B. White and L. Huang: Appl. Phys. A Vol. 86 (2007), p.415.

Google Scholar