Progress of Studies on Fabrication of TiO2 Nanotube Arrays on Ti or Ti Alloys by Anodization

Article Preview

Abstract:

This paper gives an overall review of TiO2 nanotube arrays synthesized on titanium and its alloys substrates by anodization. The highly ordered nanotubes are fabricated by electrochemical anodization in electrolyte containing fluoride ion. During the anodization process, the electrochemical conditions such as the electrolyte, applied voltage, anodization time, temperature and alloy substrates are analyzed in detail. Anodization of titanium alloy is a simple and effect method to dope element into TiO2 nanotube which shows much higher improvement in photocatalytic and solar energy conversion than pure TiO2 nanotube arrays. In addition, we review the forming mechanism and modification. Furthermore, TiO2 nanotube arrays have great application for dye-sensitized solar cells, water splitting and biomedical and other aspects.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

441-444

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda: Nature Vol. 238 (1972), p.37.

Google Scholar

[2] A.L. Linsebigler, G. Lu, J.T. Yates: Chem. Rev Vol. 95 (1995), p.735.

Google Scholar

[3] M.R. Hofmann, S.T. Martin, W. Choi, D.W. Bahnemann: Chem. Rev Vol. 95 (1995), p.69.

Google Scholar

[4] A. Fujishima, T.N. Rao, et al: J. Photochem. Photobiol. C: Photochem. Rev Vol. 1 (2000), p.1.

Google Scholar

[5] R. Wang, K. Hashimoto, A. Fujishima, et al: Adv. Mater Vol. 10 (1998), p.135.

Google Scholar

[6] B. O'Regan, M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[7] M. Grätzel: Nature Vol. 414 (2001), p.338.

Google Scholar

[8] M. Valden, X. Lai, D. W: Science Vol. 281 (1998), p.1647.

Google Scholar

[9] N. Lopez, T.V.W. Janssens, B.S. Clausen, et al: J. Catal Vol. 223 (2004), p.232.

Google Scholar

[10] Y.T. Sul, C.B. Johansson, S. Petronis, et al: Biomaterials Vol. 23 (2002), p.491.

Google Scholar

[11] S.U.M. Khan, J. Bandara, M. Paulose: Science Vol. 297 (2002), p.2243.

Google Scholar

[12] D. Gong, C.A. Grimes: J. Mater. Res Vol. 16 (2001), p.3331.

Google Scholar

[13] Macak J M, Tsuchiya H, Traveira L et al: J. Biomed. Mater. Res Vol. 75 (2005), p.928.

Google Scholar

[14] X.J. Feng, J.M. Macak, P. Schmuki: Electrochem. Commun Vol. 9 (2007), p.2403.

Google Scholar

[15] K. Yasuda, schmuki P: Electrochimica Acta Vol. 52 (2007), p.4053.

Google Scholar

[16] S.K. Mohapatra, K.S. Raja, M. Misra, et al: Electrochimica Acta Vol. 53 (2007), p.590.

Google Scholar

[17] X.J. Feng, J.M. Mcack, S.P. Albu, et al: Acta Mater Vol. 4 (2008), p.318.

Google Scholar

[18] Q.Y. Cai, M. Paulose, O.K. Varghese, et al: Mater. Res Vol. 20 (2005), p.230.

Google Scholar

[19] H. Tsuchiya, J.M. Mccak, A. Ghicov, Y.C. Tang, et al: Electrochimica Acta Vol. 52 (2006), P. 94.

Google Scholar

[20] D. Kim, S.J. Fujimoto, P. Schmuki: Electrochemistry Communications Vol. 10 (2008), p.910.

Google Scholar

[21] W.G. Kim, J.C. Choe, Y.M. Ko, W.A. Brantley: Thin Solid Films Vol. 517 (2009), p.5033.

Google Scholar

[22] Z.C. Xu, Q. Li, S. Gao, J.K. Shang: J. Mater. Sci. Technol Vol. 28 (2012, p.865.

Google Scholar

[23] Y. Nah, A. Ghicov, D. Kim: J. Amer. Chem. Soc Vol. 130 (2008), p.15154.

Google Scholar