A PbS/ITO/Glass Based Photoelectrochemical Cell with a Sponge-Like Surface Structure

Article Preview

Abstract:

A photoelectrochemical (PEC) cell was made by a conventional three-electrode system. The working electrode was an as-prepared PbS/ITO/glass composite by a chemical bath deposition (CBD) method. The as-deposited films were characterized for structural, morphological, compositional and PEC properties. The X-ray diffraction (XRD) studies reveal that the films are polycrystalline in nature with cubic phases. The surface morphology was determined by scanning electron microscope (SEM) measurements. The film shows p-type conduction mechanism. The PEC cell, with PbS/ITO/glass as a photo cathode and Na2SO4 (0.10 M) solution as an electrolyte, was constructed and investigated for various cell parameters.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

627-630

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. B. Ellis, S. W. Kaiser and M. S. Wrighton: J. Am. Chem. Soc. Vol. 98 (1976): P. 6855.

Google Scholar

[2] J. A. Turner, T. Deutsch, J. Head and P. Vallett. Photoelectrochemical Water Systems for H2 Production,. National Renewable Energy Laboratory. 2007-05-17, Retrieved 2011-05-02.

Google Scholar

[3] Berinstein, Paula. Alternative energy: facts, statistics, and issues. Greenwood Publishing Group. ISBN 1-57356-248-3. Another photoelectrochemical method involves using dissolved metal complexes as a catalyst, which absorbs energy and creates an electric charge separation that drives the water-splitting reaction., (2001-06-30).

Google Scholar

[4] Deutsch, T. G.; Head, J. L.; Turner, J. A. J. Electrochem. Soc. Vol. 155 (2008): P. B903.

Google Scholar

[5] S. Mubeen, J. Lee, N. Singh, M. Moskovitsb and E. W. McFarland, Energy Environ. Sci. Vol. 6, (2013) P. 1633.

Google Scholar

[6] J.L. Machol, F.W. Wise, R.C. Patel and D.B. Tanner, Phys. Rev. B Vol. 48 (1993): P. 2819.

Google Scholar

[7] J. Cao, H. Zhu, D. Deng, B. Xue, L. Tang, D. Mahounga, Z. Qian, Y. Gu and J. Biomed. Mater. Res. A, Vol. 100A (2012): P. 958.

DOI: 10.1002/jbm.a.34043

Google Scholar

[8] D.B. Strasfeld, A. Dorn, D.D. Wanger and M.G. Bawendi, Nano Lett. Vol. 12 (2012): P. 569.

Google Scholar

[9] G. Zhai, A. Bezryadina, A.J. Breeze, D. Zhang, G.B. Alers and S.A. Carter, Appl. Phys. Lett. Vol. 99 (2011): P. 063512.

Google Scholar

[10] K. Szendrei, M. Speirs, W. Gomulya, D. Jarzab, M. Manca, O.V. Mikhnenko, M. Yarema, B.J. Kooi, W. Heiss and M.A. Loi, Adv. Funct. Mater. Vol. 22 (2012): P. 1598.

DOI: 10.1002/adfm.201102320

Google Scholar

[11] N. Zhao, T.P. Osedach, L. Chang, S.M. Geyer, D. Wanger, M.T. Binda, A.C. Arango, M.G. Bawendi and V. Bulovic, ACS Nano Vol. 4 (2010): P. 3743.

DOI: 10.1021/nn100129j

Google Scholar

[12] C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus and C. Matranga, J. Mater. Chem. Vol. 21 (2011): P. 13452.

Google Scholar

[13] M. A. Barote, A. A. Yadav, T. V. Chavan, and E. U. Masumdar, Dig. J. Nanomater. Bios. Vol. 6 (2011): P. 979.

Google Scholar

[14] X. Liu, F. Li, Y. Wang, H. Jin, H. Wang and Z. Li, Mater. Lett. Vol. 94 (2013): P. 19.

Google Scholar

[15] L. Chen, S. Shet, H. Tang, H. Wang, T. Deutsch, Y. Yan, J. Turner and M. Al-Jassim, J. Mater. Chem., Vol. 20 (2010): P. 6962.

Google Scholar