Photoionization in GaAs Photoconductive Semiconductor Switches

Article Preview

Abstract:

The density distribution characteristics of non-equilibrium carrier from spontaneous emission ahead of the tip of the current filaments in high gain semi-insulating GaAs photoconductive semiconductor switches are analyzed. The results show that the ratio of volume to area of the current filament and the average carrier density in the current filaments are two key factors that affect the photoionization effects of the current filaments. The reabsorption of wavelengths λ ≤ 876 nm radiations plays a dominant role in producing the maximum carrier density. The maximum density of photo-generated carrier is approximately 1~3 orders of magnitude lower than the average density of excess carrier inside the current filaments.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

631-634

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hong Liu, Li Zheng, ChengLi Ruan, Hongjun Yang, Wei Yang and Yonglin Zheng: submitted to Sci Sin-Phys Mech Astron, (2014) (In Chinese).

Google Scholar

[2] Hong Liu, Li Zheng, Hongjun Yang, Wei Yang and Yonglin Zheng: submitted to Applied Mechanics and Materials (2013).

Google Scholar

[3] Hong Liu, Chengli Ruan and Li Zheng: submitted to Chinese Science Bulletin (2011) (In Chinese).

Google Scholar

[4] F. J. Zutavern, A. Mar, G. A. Vawter, S. F. Glover, H. P. Hjalmarson and K. H. Greives, in: Proceedings 19th IEEE International Pulsed Power Conference, San Francisco, CA USA (2013), in press.

DOI: 10.1109/ppc.2013.6627460

Google Scholar

[5] C. H. Lee: submitted to Appl. Phys. Lett. (1977).

Google Scholar

[6] G. M. Loubriel, M. W. O'Malley, F. J. Zutavern, in: Proceedings 6th IEEE International Pulsed Power Conference, edited by P. J. Turchi and B. H. Bernstein, Arlington, VA (1987), in press.

Google Scholar

[7] K. H. Schoenbach, J. S. Kenney, F. E. Peterkin and R. J. Allen: submitted to Appl. Phys. Lett. (1993).

Google Scholar

[8] G. M. Loubriel, F. J. Zutavern, H. P. Hjalmarson, R. R. Gallegos, W. D. Helgeson and M. W. O'Malley: submitted to Appl. Phys. Lett. (1994).

Google Scholar

[9] Hong Liu and Chengli Ruan: submitted to Acta Optica Sinica (2009) (In Chinese).

Google Scholar

[10] Hong Liu, Li Zheng, Hongjun Yang, Wei Yang, Yonglin Zheng, Xiaoling Zhu: submitted to Laser & Optoelectronics Progress (2013) (In Chinese).

DOI: 10.3788/lop50.092303

Google Scholar

[11] F. J. Zutavern, A. G. Baca, W. W. Chow, M. J. Hafich, H. P. Hjalmarson, G. M. Loubriel, A. Mar, M. W. O'Malley and G. A. Vawter, in: IEEE Pulsed Power Plasma Science, Las Vegas, NV (2001), in press.

DOI: 10.1109/ppps.2001.961051

Google Scholar

[12] J. S. Blakemore: submitted to J. Appl. Phys. (1982).

Google Scholar