Thin-Walled Cross-Sections and their Joints: Tests and FEM-Modelling

Article Preview

Abstract:

This summary report is based on the experimental and numerical research of thin-walled cross-section’s compression resistance and shear strength of their joints carried out in St. Petersburg State Polytechnical University and HAMK University of Applied Sciences, Sheet Metal Centre. Current situation on Russian market concerning the usage of cold-formed thin-walled cross-sections is aimed to find out a base foundation to start up a stipulation of the elements under discussion in the building industry (Kolesov et al. 2007; Peleshko, Urchenko 2009; Zhmarin 2012). Some questions about the compression resistance of such cross-sections were raised on different conferences (Vatin, Sinelnikov 2013; Winter 1952; Yu Wei-Wen et al. 1996) by scientific community and by companies such as Rautaruukki Oyj (Finland). Steel galvanized C-and U-profiles and thermo-profiles are types of thin-walled cross-sections that are normally used in small houses construction (Shatov 2011; Smaznov 2011). Thermo-profiles have slots in web that decrease the thermal flow through the web, but have a negative effect on strength of the profiles (Schafer, Pekoz 1998; Vatin, Popova 2006). These profiles were an object of the research. Investigations carried out included tests to prove the compression resistance of the thin-walled cross-sections and shear strength of stud-to-rack joints. Numerical modelling of thin-walled cross-sections (Cheng, Schafer 2007) was done with contemporary analysis software (SCAD Office, Lira) (Kriksunov et al. 2010; Perel'muter et al. 2009) using the finite element method (FEM) (Bayan et al. 2011; Gordeeva, Vatin 2011; Rasmussen 2009).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 945-949)

Pages:

1211-1215

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.I. Kolesov, A. A. Lapshin, A.V. Valov, Sovremennye metody issledovaniia tonkostennykh stal'nykh konstruktsii, Privolzhskii nauchnyi zhurnal 1 (2007) 28-33.

Google Scholar

[2] I.D. Peleshko, V.V. Urchenko, Optimal'noe proektirovanie metallicheskikh konstruktsii na sovremennom etape (obzor rabot), Metallicheskie konstruktsii 15 (2009) 13-21.

Google Scholar

[3] E.N. Zhmarin Mezhdunarodnaia assotsiatsiia legkogo stal'nogo stroitel'stva, Construction of Unique Buildings and Structures 2 (2012) 27-30.

Google Scholar

[4] N.I. Vatin, A.S. Sinelnikov, Strength and Durability of Thin-Walled Cross-Sections, Design, Fabrication and Economy of Metal Structures. International Conference Proceedings, 2013, Miskolc, Hungary, April 24-26, Miskolc, 2013, pp.165-170.

DOI: 10.1007/978-3-642-36691-8_25

Google Scholar

[5] George Winter, Light Gauge (Thin-Walled) Steel Structures for Building in the U.S.A. preliminary publication, 4th Congress of the International Association for Bridge and Engineering, 1952, 524 p.

Google Scholar

[6] Wei-Wen Yu, D.S. Wolford, A.L. Johnson, Golden Anniversary of the AISI Specification, 13 International specialty conference on Cold-Formed Steel Structures, St. Louis, MO, 1996, pp.1-5.

Google Scholar

[7] D.S. Shatov, Finite element modelling of open section perforated thin-walled studs made from thin-walled steel profiles, Magazine of Civil Engineering 3(21) (2011) 32-35.

Google Scholar

[8] D.N. Smaznov, Konechno-elementnoe modelirovanie stoek zamknutogo secheniia iz kholodnognutykh profilei, Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta, 123 (2011) 334-337.

Google Scholar

[9] W. Schafer, T. Pekoz, Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses, Journal of Constructional Steel Research 47 (1998) 193-210.

DOI: 10.1016/s0143-974x(98)00007-8

Google Scholar

[10] N.I. Vatin, E.N. Popova, Termoprofil v legkikh stal'nykh stroitel'nykh konstruktsiiakh, St. -Petersburg: Izd-vo SPbGPU, 2006, 63 p.

Google Scholar

[11] Y. Cheng, B.W. Schafer, Simulation of cold-formed steel beams in local and distortional buckling with applications to the direct strength method, Journal of Constructional Steel Research 63 (5) (2007) 581-590.

DOI: 10.1016/j.jcsr.2006.07.008

Google Scholar

[12] E.Z. Kriksunov, A.V. Perelmuter, V.V. Urchenko, Proektirovanie flantsevykh soedinenii ramnykh uzlov, Promyshlennoe i grazhdanskoe stroitel'stvo 2 (2010) 33-37.

Google Scholar

[13] A.V. Perelmuter, Kriksunov, E.Z., Karpilovskii, V.S. Maliarenkok A.A. Integrirovannaia sistema dlia rascheta i proektirovaniia nesushchikh konstruktsii zdanii i sooruzhenii SCAD Office. Novaia versiia, novye vozmozhnosti, Magazine of Civil Engineering, №2, 2009, pp.10-12.

Google Scholar

[14] Anwer Ali Bayan, Saad Mohd Hanim Osman Sariffuddin, Finite Element Analysis of Cold-formed Steel Connections, International Journal of Engineering (IJE) 5 (2) (2011) 55-61.

Google Scholar

[15] A.O. Gordeeva, N.I. Vatin, Magazine of Civil Engineering, 3(21) (2011) 36-46.

Google Scholar

[16] K.J.R. Rasmussen, Experimental investigation of local-overall interaction buckling of stainless steel lipped channel columns, Journal of Constructional Steel Research, 65 (8-9) (2009) 1677-1684.

DOI: 10.1016/j.jcsr.2009.04.025

Google Scholar

[17] G.J. Hancock, Light gauge construction, Progress in Structural Engineering and Materials, 1997, pp.25-26.

Google Scholar

[18] T. Pekoz, Development of a Unified Approach to the Design of Cold-formed Steel Members, Research Report CF 87-1, American Iron and Steel Institute, (1987).

Google Scholar

[19] SP 16. 13330. 2011, Steel structure (Russian Code), Moskow, 2011, 171 p.

Google Scholar

[20] A.R. Tusnin, Chislennyi raschet konstruktsii iz tonkostennykh sterzhnei otkrytogo profilia, Moscow: Izd-vo ASV, 2009, 143 p.

Google Scholar

[21] G.I. Belyi, Raschet uprugoplasticheskikh tonkostennykh sterzhnei poprostranstvenno-deformiruemoi scheme, Stroitel'naia mekhanika sooruzhenii: Mezhvuz. temat. sb. tr, LISI, 42, 1983, pp.40-48.

Google Scholar

[22] I.V. Astakhov, Prostranstvennaia ustoichivost' elementov konstruktsii iz kholodnognutykh profilei, Dissertation, St. -Petersburg, 2006, 123 p.

Google Scholar

[23] Hartmut Pasternak, John Ermopoulos. Design of steel frames with slender joint-panels, Journal of Constructional Steel Research 35(2) (1995) 165-187.

DOI: 10.1016/0143-974x(94)00034-f

Google Scholar

[24] T.V. Nazmeeva, Bearing capacity of compressed continuous and perforated thin-walled steel members of C-shaped cold-formed profiles, Magazine of Civil Engineering 5 (2013) 44-51.

DOI: 10.5862/mce.40.5

Google Scholar

[25] J. Kesti, Local and distortional buckling of perforated steel wall studs, Dissertation for the degree of Doctor of Science in Technology, Espoo, 2000, 101p. + app. 19p.

DOI: 10.1016/b978-008043015-7/50043-9

Google Scholar

[26] EN 1993-1-3, Design of Steel Structures: Cold-formed thin gauge members and sheeting.

Google Scholar

[27] V. Gioncu, General theory of coupled instabilities, Thin-Walled Structures, 1994, p.19 (2-4).

DOI: 10.1016/0263-8231(94)90024-8

Google Scholar

[28] V. I. Slivker, Stroitel'naia mekhanika, Moskow, ASV, 2005, 736 p.

Google Scholar

[29] V. V. Jurchenko, Designing of steel frameworks from thin-walled cold-formed profiles in SCAD Office, Magazine of Civil Engineering 8 (2010) 38-46.

Google Scholar

[30] A.N. Kretinin, I.I. Krylov, Osobennosti raboty tonkostennoi balki iz gnutykh otsinkovannykh profilei, Izvestiia vysshikh uchebnykh zavedenii, Stroitel'stvo, 6 (2008) 1-11.

Google Scholar

[31] Salamakhin S. V., Sinelnikov A. S. Modeling node screwing thin perforated steel profiles by finite element method, Construction of Unique Buildings and Structures" 4 (9) (2013) 53-63.

Google Scholar