Estimation of Unknown Function in a Class of Singular Difference Inequality in Engineering

Article Preview

Abstract:

In this paper, we discuss a class of new weakly singular difference inequality, which is solved using change of variable, discrete Jensen inequality, Beta function, the mean-value theorem for integrals and amplification method, and explicit bounds for the unknown functions is given clearly. The derived results can be applied in the study of fractional difference equations in Engineering.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 945-949)

Pages:

2467-2470

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. H. Gronwall: Ann Math. vol. 20(1919), p.292.

Google Scholar

[2] R. Bellman: Duke Mathematical Journal, Vol. 10(1943) , p.643.

Google Scholar

[3] S. Sugiyama: Bull. Sci. Engr. Research Lab. Waseda Univ. vol. 45(1969), p.140.

Google Scholar

[4] D. Henry: Geometric Theory of Semilinear Parabolic Equations(Springer-Verlag, Berlin/ Heidel- berg /New York, 1981).

Google Scholar

[5] M. Medved: J. Math. Anal. Appl. Vol. 214(1997) , p.349.

Google Scholar

[6] I. Podlubny: Fractional Differential Equations (Academic Press, New York, 1999).

Google Scholar

[7] M. Medved: J. Inequal. Appl. Vol. 5(2000), p.287.

Google Scholar

[8] Q.H. Ma and E. H. Yang: Acta Math Appl Sin. Vol. 25(2002) , p.505.

Google Scholar

[9] M. Medvevd: Tatra. Mt. Math. Publ. Vol. 38(2007), p.163.

Google Scholar

[10] H. Ye, J. Gao and Y. Ding: J. Math. Anal. Appl. Vol. 328(2007), p.1075.

Google Scholar

[11] E. H. Yang, Q. H. Ma and M. C. Tan: J. Jinan Univ. Vol. 28(1) (2007), p.1.

Google Scholar

[12] M. Kuczma: An introduction to the theory of functional equations and inequalities: Cauchy's equation and Jensen's inequality (University of Katowice, Katowice, 1985).

Google Scholar

[13] K. Zheng, H. Wang and C. Guo: Advances in Difference Equations Vol. 2013 (2013), Article (239).

Google Scholar