[1]
J. F. Zhang, G. P. Guo, F. M. Wu:New multi-soliton solutions and travelling wave solutions of the dispersive long-wave equations. Chin. Phys. B (2002) 11(6): 533-536.
DOI: 10.1088/1009-1963/11/6/303
Google Scholar
[2]
Z.Y. Ma, C. L. Zheng:Two classes of fractal structures for the (2+1)-dimensional dispersive long wave system. Chin. Phys. B (2006) 15(01): 0045-0052.
Google Scholar
[3]
J. M. Zhu, Z. Y. Ma: An extended Jacobian elliptic function method for the discrete mKdV lattice. Chin. Phys. B (2005) 14(01): 0017-0020.
Google Scholar
[4]
J. P. Fang, C. L. Zheng ,J. M. Zhu, Q. B. Ren: New family of excite solutions and chaotic solitons of generalized Breor-Kaup system in (2+1)-dimensions via an extended mapping approach. Common Theory Phys (2005) 44(02): 203-208.
DOI: 10.1088/6102/44/2/203
Google Scholar
[5]
J. P. Fang, C. L. Zhen, Q. Liu: No propagating solution in (2+1)-dimensional dispersive long-water system. Commune Theory Phys (2005) 43(02): 245-250.
Google Scholar
[6]
S. H. Ma, J. P. Fang, C. L. Zheng: Complex wave excitations and chaotic patterns for a generalized (2+1)-dimensional korteweg de-vries system. Chin. Phys. B (2008) 17(8): 2767-2773.
DOI: 10.1088/1674-1056/17/8/004
Google Scholar
[7]
S. H. Ma , X. H. Wu , J. P. Fang , C. L. Zheng: New exact solutions for the (3+1)-dimensional Jimbo-Miwa system. Chaos Solutions and Fractals (2009)40(3): 1352-1355.
DOI: 10.1016/j.chaos.2007.09.012
Google Scholar
[8]
S. H. Ma, J. P. Fang, C. L. Zheng: New exact solutions of the (2+1)-dimensional breaking soliton system via an extended mapping method. Chaos Solutions and Fractals (2009) 40(1): 210-214.
DOI: 10.1016/j.chaos.2007.07.043
Google Scholar
[9]
S. H. Ma, J. P. Fang, Q. B. Ren: Instantaneous embed solution and instantaneous taper-like soliton for the (3+1)-dimensional Burgers system. Acta Phys. Sin (2010) 59(7): 4420-4425.
DOI: 10.7498/aps.59.4420
Google Scholar
[10]
J. Q. Mei , H. Q. Zhang: New families of soliton and periodic solutions of bose einstein condensation in linear magnetic field and time-dependent laser field. Commune Theory Phys (2005) 44(02): 209-212 44, 209-212.
DOI: 10.1088/6102/44/2/209
Google Scholar