Optimal Recovery of Functions of the Class Hp,p (1≤ p ≤ ∞) in the Unit Circle

Article Preview

Abstract:

In the below work the problem of optimal recovery of functions in Hardy class is covered. Namely, by the values ​​of these functions in a finite number of points lying in the unit circle determined their value at a given point. Coefficients of the linear best approximation method and error of the best method are calculated. The functions are considered with some given weight function.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 945-949)

Pages:

2471-2473

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Havinson S. Ja. Teorija jekstremal'nyh zadach dlja ogranichennyh analiticheskih funkcij, udovletvorjajushhih dopolnitel'nym uslovijam vnutri oblasti. – Uspehi matem. nauk, 1963, t. 18, vyp 2(110), pp.25-98.

Google Scholar

[2] Havinson S. Ja. Osnovy teorii jekstremal'nyh zadach dlja ogranichennyh analiticheskih funkcij i ih razlichnye obobshhenija. – M.: MISI im. V.V. Kujbysheva, 1981 g., - 92p.

Google Scholar

[3] Havinson S. Ja. Osnovy teorii jekstremal'nyh zadach dlja ogranichennyh analiticheskih funkcij s dopolnitel'nymi uslovijami. – M.: MISI im. V.V. Kujbysheva, 1981 g., - 89p.

Google Scholar

[4] Osipenko K. Ju. Nailuchshee priblizhenie analiticheskih funkcij po informacii ob ih znachenijah v konechnom chisle tochek. – Matem. zametki, 1976 g., t. 19, №1, pp.29-40.

Google Scholar