State and Input Observer Design for Nonlinear Impulsive Systems via LMI Approach

Article Preview

Abstract:

This paper addresses the observer design for simultaneously estimating the state and input of a class of impulsive systems whose nonlinear terms satisfy an incremental quadratic constraint. By employing Lyapunov theory, sufficient conditions for asymptotical and exponential estimation convergence are derived. Gain matrices of the proposed observer can be obtained by solving linear matrix inequalities (LMIs).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-124

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.E. Thau. International Journal of Control, vol. 17, pp.471-480, (1973).

Google Scholar

[2] M. Darouach, M. Zasadzinski, S. J. Xu. IEEE Transactions on Automatic Control, vol. 39, pp.606-609, (1994).

Google Scholar

[3] S. H. Wang, E. J. Davison, P. Dorato. IEEE Transactions on Automatic Control, vol. 20, pp.716-717, (1995).

Google Scholar

[4] M. Boutayeb, M. Darouach, H. Rafaralahy. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, pp.345-349, (2002).

DOI: 10.1109/81.989169

Google Scholar

[5] M. Corless and J. Tu. Automatica, vol. 34, pp.757-764, (1998).

Google Scholar

[6] Q.P. Ha and H. Trinh. Automatica, vol. 40, pp.1779-1785, (2004).

Google Scholar

[7] H. Trinh and Q. P. Ha. IEEE Transactions on Circuits and Systems-II: Express Briefs, VOL. 54, pp.527-531, (2007).

Google Scholar

[8] Z. Gao and S. X. Ding. IEEE Transactions on Signal Processing, VOL. 55, pp.5541-5551, (2007).

Google Scholar

[9] M. Chadli, A. Akhenak, J. Ragot, D. Journal of the Franklin Institute, Vol. 346, pp.593-610, (2009).

DOI: 10.1016/j.jfranklin.2009.02.011

Google Scholar

[10] T. Yang. Impulsive Control Theory. Springer, (2001).

Google Scholar

[11] H. Zhang, Z. H. Guana, G. Feng. Automatica, vol. 44, pp.1004-1010, (2008).

Google Scholar

[12] W. H. Chen and W. Automatica, Vol. 45, pp.109-117, (2009).

Google Scholar

[13] J. Lu and D. Hill. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, pp.710-714, (2007).

Google Scholar

[14] T. Raff and F. Allg¨ower. Observers with Impulsive Dynamical Behavior for Linear and Nonlinear Continuous-Time Systems. Proceedings of 46th IEEE Conference on Decision and Control, pp.4287-4292, Dec. 12-14, 2007, New Orleans, LA, USA.

DOI: 10.1109/cdc.2007.4434613

Google Scholar

[15] A. Mahmoudi, A. Momeni, A. G. Aghdam, P. Gohari. On Observer Design for a Class of Impulsive Switched Systems. Proceedings of the 2008 American Control Conference, pp.4633-4639, June 11-13, 2008. Seattle, Washington, USA.

DOI: 10.1109/acc.2008.4587226

Google Scholar

[16] A.B. Acikmese and M. Corless. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality. Proceedings of the 2005 American Control Conference, pp.3622-3629, June 8-10, 2005. Portland, OR, USA.

DOI: 10.1109/acc.2005.1470536

Google Scholar

[17] S. Boyd, E. Ghaoui, E. Feron, V. Balakrishnan. Linear matrix Inequality in Systems and Control Theory. Philadelphia, PA: SIAM, (1994).

Google Scholar