Study on the Loadings of Co3O4 Supported on rGO as the Catalyst for Degradation of Orange II in Water by AOPs Based on Sulfate Radicals

Article Preview

Abstract:

A variety of loadings of Cobalt oxide (Co3O4) was successfully supported on the reduced graphene (Co3O4/rGO) as the catalyst to activate peroxymonosulfate (PMS) to generate sulfate radicals (SO4•) for degrading Orange II in water. The crystal structure of Co3O4/rGO with different loadings was characterized by X-ray diffraction (XRD), and their catalytic activity was compared in the same conditions. The result showed that the catalyst has an optimum Co3O4 loading. Using the 70.7% loading of Co3O4 in Co3O4/rGO as the catalyst, 100% decomposition could be achieved within 4 min with 1 mM Orange II, 0.05g/L catalyst, and 10 mM PMS.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

62-65

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. P. Anipsitakis and D. D. Dionysiou: Environ. Sci. Technol. Vol. 37 (2003), p.119.

Google Scholar

[2] G. P. Anipsitakis and D. D. Dionysiou: Appl. Catal., B Vol. 54 (2004), p.155.

Google Scholar

[3] P.R. Shukla, H.Q. Sun, S.B. Wang and M.O. Tadé: Sep. Purif. Technol. Vol. 77 (2011), p.230.

Google Scholar

[4] Q.J. Yang, H. Choi, Y.J. Chen and D.D. Dionysiou: Appl. Catal., B Vol. 77 (2008), p.300.

Google Scholar

[5] P.H. Shi, R.J. Su, F.Z. Wan, D.X. Li and S.H. Xu: Appl. Catal., B Vol. 123–124 (2012), p.265.

Google Scholar

[6] Y.J. Yao, Z.H. Yang, H.Q. Sun and S.B. Wang: Ind. Eng. Chem. Res. Vol. 51 (2012), p.14958.

Google Scholar

[7] W. Zhang, H.L. Tay, S.S. Lim, Z.Y. Zhong and R. Xu: Appl. Catal., B Vol. 95 (2010), p.93.

Google Scholar

[8] S.J. Jiang and S.Q. Song: Appl. Catal., B Vol. 140–141 (2013), p.1.

Google Scholar

[9] G. Cheng, M. S. Akhtar and F.J. Stadler: ACS Appl. Mater. Interfaces Vol. 5 (2013), p.6635.

Google Scholar

[10] W.S. Hummers and R.E. Offeman: J. Am. Chem. Soc. Vol. 80 (1958), p.1339.

Google Scholar

[11] T.T. Baby and R. Sundara: Mater. Chem. Phys. Vol. 135 (2012), p.623.

Google Scholar

[12] T. Battumur, S.B. Ambade, R.B. Ambade, P. Pokharel, D.S. Lee, S.H. Han, W.J. Lee and S.H. Lee: Curr. Appl Phys. Vol. 13 (2013), p.196.

DOI: 10.1016/j.cap.2012.07.009

Google Scholar

[13] Y.S. Fu, H.Q. Chen, X.Q. Sun and X. Wang: Appl. Catal., B Vol. 111–112 (2012), p.280.

Google Scholar