Synthesis and Characterization of Crosslinking Etherification Bagasse Xylan

Article Preview

Abstract:

The bagasse xylan is a polysaccharide that occurs in nature in enormous amount in various one year-and perennial plants. Versatile ways to generate bio-based functional polymers result from the chemical modification of this biopolymer. The crosslinking etherification bagasse xylan (CEBX) has been synthesized by using aqueous solution polymerization method. It implies the use of sodium hydroxide, chloroacetic acid as a carboxymethylating agent and epichlorohydrin as crosslinking agent. The DS values of Carboxymethylated xylan up to 0.59 can be controlled by adjusting the molar ratio in a two step syntheses. Crosslinking etherification bagasse xylan are water soluble at a DS of 0.3. The result showed that the final product had excellent surface activity. IR spectrometry were applied to characterize the carboxymethyl xylans in detail, and revealed characteristic absorption peaks at 1600, 1426 and 1324cm−1.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 960-961)

Pages:

204-207

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ebringerova, T. Heinze, Macromol. Rapid Commun. Vol. 21(2000), p.542.

Google Scholar

[2] D. R. Burton, P. Poignard, R. L. Stanfield, I. A. Wilson: Science, Vol. 337(2012), 183-186.

Google Scholar

[3] B. Fatima-Zohra, P. Catherine, H. Patrick: Carbohydrate Research, Vol. 346(2011), pp.2896-2904.

Google Scholar

[4] N.G.V. Fundador, Y. Enomoto-Rogers, A. Takemura: Polymer Degradation and Stability Vol. 98(2013), pp.1064-1071.

DOI: 10.1016/j.polymdegradstab.2013.01.010

Google Scholar

[5] A. Baar, W. M. Kulicke, K. Szablikowski, R. Kiesewetter, Macromol. Chem. Phys. Vol. 195 (1994), p.1483.

DOI: 10.1002/macp.1994.021950503

Google Scholar

[6] S. Daus, K. Petzold-Welcke, M. Kötteritzsch: Macromolecular Materials and Engineering Vol. 296(2011), pp.551-561.

DOI: 10.1002/mame.201000390

Google Scholar

[7] M. Pinaki, A.P. Carlos, B.D. Elsa: International Journal of Biological Macromolecules Vol. 46(2010), pp.173-178.

Google Scholar

[8] T.M. Mohammad, F. Yaghoub, J.S. Maryam: Food Chemistry Vol. 138(2013), pp.1028-1033.

Google Scholar

[9] B. Tian , Y. Chen , S.J. Ding: Protein Expression and Purification Vol. 85(2012), pp.44-50.

Google Scholar

[10] T. Heinze, K. Pfeiffer, Angew. Makromol. Chem. 1999, 266, 37.

Google Scholar

[11] T. Marie-Christine, N. Audrey, D. Claude: Journal of Biotechnology Vol. 155(2011), pp.257-265.

Google Scholar

[12] K. Toth, G.M.P. Van, H.A. Schols: BioEnergy Research Vol. 6(2013), pp.631-643.

Google Scholar

[13] K. Petzold, K. Schwikal, T. Heinze: Carbohydrate Polymers Vol. 64(2006), pp.292-298.

DOI: 10.1016/j.carbpol.2005.11.037

Google Scholar

[14] J.L. Ren, X.W. Peng, P. Feng, R.C. Sun: Fibers and Polymers Vol. 14(2013), pp.16-21.

Google Scholar

[15] T. Heinze, K. Pfeiffer, Angew. Makromol. Chem. 1999, 266, 37.

Google Scholar