[1]
S. Sinha, K. E. Goodson. Thermal conduction in sub-100nm transistors. Microelectronics Journal [J], 2006, 37: 1148-1157.
DOI: 10.1016/j.mejo.2005.07.015
Google Scholar
[2]
S. Sinha, E. Pop, K. E. Goodson. Non-equilibrium phonon distributions in sub-100 nm silicon transistors. ASME. J. Heat Transfer [J], 2006, 128: 638-648.
DOI: 10.1115/1.2194041
Google Scholar
[3]
D.Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, Washington, DC, (1996).
Google Scholar
[4]
A. A. Joshi, A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films, Journal of Applied Physics [J], 1993, 74: 31–39.
DOI: 10.1063/1.354111
Google Scholar
[5]
S. S. Ghai, W. T. Kim, M. S. Jhon, A novel heat transfer model and its application to information storage systems, Journal of Applied Physics [J], 2005, 97: 703.
DOI: 10.1063/1.1853896
Google Scholar
[6]
S. Pispati et al. Multiscale thermal device modeling using diffusion in the Boltzmann Transport Equation [J], 2013, 64: 286-303.
Google Scholar
[7]
S. Pisipati et al. A novel alternate approach for multiscale thermal transport using diffusion in the Boltzmann Transport Equation [J], 2011, 54: 3406-3419.
DOI: 10.1016/j.ijheatmasstransfer.2011.03.046
Google Scholar
[8]
R. A. Escobar, B. Smith, C. H. Amon. Lattice Boltzmann modeling of subcontinuum energy transport in crystalline and amorphous microelectronic devices. ASME. J. Heat Transfer [J], 2006, 128: 115-125.
DOI: 10.1115/1.2188951
Google Scholar
[9]
R. A. Escobar, C. H. Amon. Thin film phonon heat conduction by the dispersion lattice Boltzmann method. ASME. J. Heat Transfer [J], 2008, 130: 092402.
DOI: 10.1115/1.2944249
Google Scholar
[10]
A. Homayoon, A. H. Meghdadi Isfahani, E. Shirani, M. Ashrafuzadeh. A novel modified lattice Boltzmann method for simulation of gas flows in wide range of Knudsen number. Int. J. Heat Mass Transfer [J], 2011, 38: 827-832.
DOI: 10.1016/j.icheatmasstransfer.2011.03.007
Google Scholar