Thermal Transport in Hotspots Using the Lattice Boltzmann Method with Application to Silicon-on-Insulator Transistors

Article Preview

Abstract:

Silicon-on-insulator (SOI) transistors have been widely used in the micro-electronic devices. The Lattice Boltzmann method (LBM) is employed to simulate the heat conductions of hotspots appeared in a SOI transistor. The results show that a thermal wave effect is appeared in micro-region, and it can not be found in Fourier prediction. Comparing the results obtained by the Fourier law and LBM, we find that the LBM solution shows approximately 22% higher energy density than the Fourier prediction. When two thermal waves form different hotspots meet together, a significant energy enhancement will be appeared.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 960-961)

Pages:

337-340

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sinha, K. E. Goodson. Thermal conduction in sub-100nm transistors. Microelectronics Journal [J], 2006, 37: 1148-1157.

DOI: 10.1016/j.mejo.2005.07.015

Google Scholar

[2] S. Sinha, E. Pop, K. E. Goodson. Non-equilibrium phonon distributions in sub-100 nm silicon transistors. ASME. J. Heat Transfer [J], 2006, 128: 638-648.

DOI: 10.1115/1.2194041

Google Scholar

[3] D.Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, Washington, DC, (1996).

Google Scholar

[4] A. A. Joshi, A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films, Journal of Applied Physics [J], 1993, 74: 31–39.

DOI: 10.1063/1.354111

Google Scholar

[5] S. S. Ghai, W. T. Kim, M. S. Jhon, A novel heat transfer model and its application to information storage systems, Journal of Applied Physics [J], 2005, 97: 703.

DOI: 10.1063/1.1853896

Google Scholar

[6] S. Pispati et al. Multiscale thermal device modeling using diffusion in the Boltzmann Transport Equation [J], 2013, 64: 286-303.

Google Scholar

[7] S. Pisipati et al. A novel alternate approach for multiscale thermal transport using diffusion in the Boltzmann Transport Equation [J], 2011, 54: 3406-3419.

DOI: 10.1016/j.ijheatmasstransfer.2011.03.046

Google Scholar

[8] R. A. Escobar, B. Smith, C. H. Amon. Lattice Boltzmann modeling of subcontinuum energy transport in crystalline and amorphous microelectronic devices. ASME. J. Heat Transfer [J], 2006, 128: 115-125.

DOI: 10.1115/1.2188951

Google Scholar

[9] R. A. Escobar, C. H. Amon. Thin film phonon heat conduction by the dispersion lattice Boltzmann method. ASME. J. Heat Transfer [J], 2008, 130: 092402.

DOI: 10.1115/1.2944249

Google Scholar

[10] A. Homayoon, A. H. Meghdadi Isfahani, E. Shirani, M. Ashrafuzadeh. A novel modified lattice Boltzmann method for simulation of gas flows in wide range of Knudsen number. Int. J. Heat Mass Transfer [J], 2011, 38: 827-832.

DOI: 10.1016/j.icheatmasstransfer.2011.03.007

Google Scholar