[1]
Beck, J., Volpert, V. 2003. Nonlinear dynamics in a simple model of solid flame microstructure., Physica D 182: 86-89.
DOI: 10.1016/s0167-2789(03)00119-2
Google Scholar
[2]
Takeo S. 2007. Study on the reaction mechanism of black powder and its application ballistics of firework shells., Journal of pyrotechnics archive 2: 45-47.
Google Scholar
[3]
Mukasyan, A. 2008. Discrete reaction waves: Gasless combustion of solid powder mixtures, Progress in Energy and Combustion Science 34: 377-380.
DOI: 10.1016/j.pecs.2007.09.002
Google Scholar
[4]
Kwon, Y., Alexander, A., Gromov, A. 2003. The mechanism of combustion of superfine aluminum powders, Combustion and Flame 133: 385-389.
DOI: 10.1016/s0010-2180(03)00024-5
Google Scholar
[5]
Yuriy, L., Dreizin, E. 2006. Particle combustion rates for mechanically alloyed Al–Ti and aluminum powders burning in air., Combustion and Flame 145: 714-717.
DOI: 10.1016/j.combustflame.2005.11.006
Google Scholar
[6]
Luisa, D, Benilde F., Costa, R. 2007. Fe2O3/aluminum thermite reaction intermediate and final products haracterization., Materials Science and Engineering 465: 199-203.
DOI: 10.1016/j.msea.2007.03.063
Google Scholar
[7]
Zuccaro, G., Lapenta, G, Maizza, G. 2004. Particle in cell simulation of combustion synthesis of TiC nanoparticles., computer physics communications 162: 89–101.
DOI: 10.1016/j.cpc.2004.05.004
Google Scholar
[8]
Smolyakov, V. 2002. Melting of an inert component in a gasless combustion wave., Fiz Goren Vzryva 38: 78-81.
Google Scholar
[9]
Kodal, A., Watson, K. 2003. Turbulence Filter and POD Analysis for Velocity Fields in Lifted CH4-Air Diffusion Flames., Flow, Turbulence and Combustion 70: 21-28.
DOI: 10.1023/b:appl.0000004914.21646.c4
Google Scholar
[10]
ZHOU, J., ZANG S. 2005. Application in the Measurement of Diffusion Combustion Flow Field., Combustion Science and Technology 11: 92-98.
Google Scholar
[11]
Yang, H., Zhao, D. 2007. Application of PIV System to the Diffusion Combustion Flow Field., Journal of Engineering Thermophysics 28: 233-238.
Google Scholar
[12]
Cheng, Y., Torregrosa, M., Villegas, F. 2011. Time Resolved Scanning PIV measurements at fine scales in a turbulent jet., International Journal of Heat and Fluid Flow 32: 708-716.
DOI: 10.1016/j.ijheatfluidflow.2011.02.006
Google Scholar
[13]
P. Pianko-Oprych, A.W. Nienow, M. Barigou. 2009. Positronemission particletracking (PEPT) compared to particle image velocimetry (PIV) for studying the flow generated by a pitched-blade turbine in single phase and multi-phase systems., Chemical Engineering Science 64: 4955-4960.
DOI: 10.1016/j.ces.2009.08.003
Google Scholar
[14]
Gregory, Y., Kyle, S., Michael, R., Zachariah, K. 2009. Combustion characteristics of boron nanoparticles., Combustion and Flame 156: 322-328.
DOI: 10.1016/j.combustflame.2008.10.007
Google Scholar
[15]
LI, Y., QI, W. 2009. Calculation Method on Micro Pore Image Coordinates of the Center of Mass., Journal of Shenyang Normal University ( Natural Science) 27: 316-319.
Google Scholar
[16]
RUAN, X., SONG, X. 1998. PIV Technique and BICC Algorithm., Journal of Experimental Mechanics 13: 514-519.
Google Scholar